I have been working on it and this is what I have now.
We take the Laplace transform in the t variable.
\mathcal{L}\left(2x \frac{\partial u}{\partial t} \right) = 2x \int_0^{\infty} \frac{\partial u}{\partial t} e^{-st} dt = 2x (-u(x,0) + \bar{U}(x,s)),
where \bar{U}(x,s) =\int_0^{\infty} u(x,t) e^{-st} dt. Also,
\mathcal{L}\left(x^2 \frac{\partial u}{\partial x} \right) = x^2 \frac{\partial}{\partial x}\mathcal{L}(u) = x^2 \frac{\partial}{\partial x} \bar{U} (x,s),
and x is treated as a constant.
Hence we have,
-2x u(x,0) + 2xs \bar{U} (x,s) + x^2 \frac{\partial \bar{U}}{\partial x} (x,s) = \mathcal{L} (g(t)).
So,
x^2 \frac{d}{dx} \bar{U}(x,s) + 2xs \bar{U} (x,s) = \mathcal{L} (g(t)),
or dividing by x^2
\frac{d}{dx} \bar{U}(x,s) + \frac1x 2s \bar{U} (x,s) = \frac{\mathcal{L} (g(t))}{x^2}
We solve this ODE by multiplying through by the integrating factor of x^{2s}.
This gives
x^{2s} \frac{d\bar{U}}{dx} + 2sx^{2s-1} \bar{U} = \mathcal{L} (g(t)) x^{2s-2}.
Hence,
\frac{d}{dx} (x^2s\bar{U}) = \mathcal{L} (g(t)) x^{2s-2}.
Therefore,
x^2s\bar{U} = \mathcal{L} (g(t)) \int x^{2s-2} = \mathcal{L} (g(t)) \left( \frac{x^{2s-1}}{2s-1} + C \right)
for some constant of integration C. Solving for \bar{U} (x,s) gives,
\bar{U} (x,s) = \frac{\mathcal{L} (g(t))}{x(2s-1)} + \frac{C}{x^{2s}}.
Now we need to determine C. To do this we take the Laplace transform of the
initial condition to get,
\bar{U} (1,s) = \mathcal{L} (u(1,t)) = \mathcal{L} (0) = 0.
We can now find our constant C. We have
\bar{U} (1,s) = \frac{\mathcal{L} (g(t))}{2s-1} + C = 0 \Rightarrow C = - \frac{\mathcal{L} (g(t))}{2s-1}
Hence
\bar{U} (x,s) = \frac{\mathcal{L} (g(t))}{x(2s-1)} - \frac{\mathcal{L} (g(t))}{x^{2s}(2s-1)}.
To find u(x,t) we now take the inverse Laplace transform:
\begin{align*}<br />
u(x,t)&= \mathcal{L}^{-1} \left( \frac{\mathcal{L} (g(t))}{x(2s-1)} -<br />
\frac{\mathcal{L} (g(t))}{x^{2s}(2s-1)} \right)\\<br />
&= \mathcal{L} (g(t)) \left( \mathcal{L}^{-1} \left( \frac1{x(2s-1)} \right) -<br />
\mathcal{L}^{-1} \left( \frac1{x^{2s}(2s-1)} \right) \right) \\<br />
&= \mathcal{L} (g(t)) \left( \frac1{sx(2s-1)} - \frac{x^{-2s}}{s(2s-1)} \right)<br />
\end{align*}