Engineering First order differential equations (movement of a rotary solenoid)

Click For Summary
The discussion focuses on solving a first-order differential equation related to the movement of a rotary solenoid, specifically the equation 5(dθ/dt) + 6θ = 0. The user attempts to derive the general solution but incorrectly uses the integral and notation, confusing "in" with "ln" for natural logarithm. Correct guidance indicates that the proper integration leads to ln|θ| = -6/5t + C, from which θ can be expressed as θ(t) = θ₀ * e^(-6/5t) for the initial condition θ(0) = θ₀. The thread emphasizes the separation of variables method as crucial for solving such differential equations effectively.
Ben_Walker1978
Messages
113
Reaction score
6
Homework Statement
The movement of a rotary solenoid is given by the following differential equation
Relevant Equations
$${5} \frac{\text{d}\theta}{\text{d}t}+{6}\theta=0$$
My question i am trying to solve:

Untitled.png


I have successfully done first order equations before but this one has got me a little stuck. My attempt at the general solution below:

$${5} \frac{\text{d}\theta}{\text{d}t}=-6\theta$$

$${5} \frac{\text{d}\theta}{\text{d}t} =\frac{\text{-6}\theta}{5}$$

$$d\theta = \frac{-6\theta}{5} dt $$

The integral should then = $$\theta = \frac{1}{5} in(5)$$

$$\theta = -6 \times (\frac{1}{5}) in (5) + c$$

This is my attempt an the general solution. Is this correct? Or could anyone help if i have gone wrong please?

Thank you
 
Last edited:
Physics news on Phys.org
¥frac{d¥theta}{¥theta}=-¥frac{6}{5} dt
You can integrate the both sides.

Edit to fix broken LaTeX:
##\frac{d \theta} \theta = -\frac 6 5 dt##
 
Last edited by a moderator:
Ben_Walker1978 said:
Homework Statement:: The movement of a rotary solenoid is given by the following differential equation
Relevant Equations:: $${5} \frac{\text{d}\theta}{\text{d}t}+{6}\theta=0$$

My question i am trying to solve:

View attachment 300338

I have successfully done first order equations before but this one has got me a little stuck. My attempt at the general solution below:

$${5} \frac{\text{d}\theta}{\text{d}t}=-6\theta$$

$${5} \frac{\text{d}\theta}{\text{d}t} =\frac{\text{-6}\theta}{5}$$

$$d\theta = \frac{-6\theta}{5} dt $$

The integral should then = $$\theta = \frac{1}{5} in(5)$$

$$\theta = -6 \times (\frac{1}{5}) in (5) + c$$
There is no "in" function. If you're reading this off your calculator it is ln (lowercase ell n), short for logarithmus naturalis, or in English, natural logarithm.
Ben_Walker1978 said:
This is my attempt an the general solution. Is this correct? Or could anyone help if i have gone wrong please?
No, your solution is not correct.
Going from ##\frac{d\theta} \theta = -6/5 dt##, you should get ##\ln|\theta| = -6/5t + C##
How do then solve for ##\theta## in that equation?
Ben_Walker1978 said:
Thank you
 
If θo it is θ(t) for t=0 then θ(t)=θo*e^(-6/5*t). How to get it?​
 
The solution to these type of differential equations is called separation of variables. Where the idea is, to separate the infinitesimal dx and dy on opposite sides of the equal signs (if possible). Then integrate with respect to each infinitesimal on each side. Do not forget your constant of integration on the right.
 
Thread 'Why wasn’t gravity included in the potential energy for this problem?'
I’m looking at the attached vibration problem. The solution in the manual includes the spring potential energy but does NOT include the gravitational potential energy of the hanging mass. Can someone explain why gravitational potential energy is not included when deriving the equation of motion? I tried asking ChatGPT but kept going in circles and couldn't figure out. Thanks!

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
0
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 28 ·
Replies
28
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K