First order phase transition/constancy of Gibbs

AI Thread Summary
The discussion focuses on the behavior of Gibbs free energy (G) during first-order phase transitions, emphasizing that G reaches a minimum at equilibrium under constant pressure and temperature. It establishes that at the critical temperature (TC), G remains constant for two distinct phases despite differing volumes, as the system is in thermal equilibrium. The latent heat (L) associated with the phase change is confirmed to be positive, indicating an increase in entropy as the substance is heated. It is suggested that TC typically decreases with increased pressure, aligning with the Clausius-Clapeyron equation. The relationship between latent heat and phase transitions at constant temperature is clarified, noting the infinitesimal temperature change during the transition.
CAF123
Gold Member
Messages
2,918
Reaction score
87

Homework Statement


a) Starting from the statement that total entropy (Ssystem+Ssurr) can only increase, show that G = U - TS +pV will attain its minimum value for a system in equilibrium with a fixed pressure and temperature reservoir.

b)At atmospheric pressure, a particular substance is found to undergo a discontinuous change between two states at temperature TC when heated. Its volume increases by ΔV and it absorbs latent heat L as its temperature is changed from just below TC to just above TC. Explain why at TC, the value of G is the same for the two states with different volumes.

c)Explain why L must be positive and comment on whether TC is expected to increase or decrease with pressure.

Homework Equations


Clausius-Clapyeron Equation

The Attempt at a Solution


a)Taking the differential of the given equation, I get dG = dU - TdS -SdT +pdV + Vdp. Eliminate two terms because the system is in thermal equilibrium at constant pressure/temperature. This gives dG = dU - TdS + pdV = 0 using the first law. Hence G is mimimum when the boundary conditions of the system permit a constant pressure/temperature environment. I did not really use the fact that the total S ≥ 0 though, so is there another derivation?

b)So is this process occurring at constant pressure and is TC the value of T on the boundary line between the two phases at that particular pressure? If the case, then at TC the two phases instantaneously have the same pressure/temperature. dG = Vdp - SdT = 0, so G is constant over the boundary line.

c) V increases upon heating at constant pressure. So I would imagine this would correspond to an increase in entropy of the system. So l = T(S2-S1) > 0. dP/dT is usually +ve for most substances. So dT/dP is decreasing, so in most cases expect TC to decrease with pressure. Did I do this right?

Many thanks.
 
Physics news on Phys.org
Also, I thought a latent heat was associated with a change of phase transition at constant temperature. It says that the substance absorbs latent heat from just below Tc to just above Tc, so it is therefore changing temperature, albeit infinitesimally if that is what 'just above (below)' means.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top