MHB First Weyl Algebras .... A_1 ....

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Weyl
Click For Summary
The discussion centers on understanding the relationship between the first Weyl Algebras as presented in Matej Bresar's book, particularly the equation [D, L] = I, where D represents differentiation and L denotes multiplication by x. A participant explains that this equation arises from the product rule in calculus, illustrating how the differentiation operator and multiplication operator interact. The clarification emphasizes that the commutator [D, L] results in the identity operator I, contrary to the initial belief that it might equal zero. This explanation helps the original poster grasp the concept effectively. The conversation concludes with appreciation for the clarification provided.
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Matej Bresar's book, "Introduction to Noncommutative Algebra" and am currently focussed on Chapter 1: Finite Dimensional Division Algebras ... ...

I need help with some remarks of Bresar on first Weyl Algebras ...

Bresar's remarks on Weyl Algebras are as follows:https://www.physicsforums.com/attachments/6236
View attachment 6237In the above text from Bresar we read the following: (see (1.4) above)

" ... ... It is straightforward to check that

$$[D, L] = I$$

the identity operator ..."Can someone please explain exactly why $$[D, L] = I$$ ... ... ?

(It looks more like $$[D, L] = 0$$ to me?)Help will be appreciated ...

Peter
 
Physics news on Phys.org
Peter said:
In the above text from Bresar we read the following: (see (1.4) above)

" ... ... It is straightforward to check that

$$[D, L] = I$$

the identity operator ..."Can someone please explain exactly why $$[D, L] = I$$ ... ... ?

(It looks more like $$[D, L] = 0$$ to me?)Help will be appreciated ...

Peter
Effectively, this is just the product rule from calculus, which tells you that $$\frac d{dx}\bigl(xf(x)\bigr) = f(x) + x\frac d{dx}\bigl(f(x)\bigr).$$ If $D$ denotes differentiation, $L$ is the operation of multiplication by $x$, and $I$ is the identity operator, then that equation can be written as $$DL\bigl(f(x)\bigr) = I\bigl(f(x)\bigr) + LD\bigl(f(x)\bigr).$$ When you hide the $\bigl(f(x)\bigr)$s and write this as an operator equation, it says $DL = I + LD$, in other words $[D,L] = DL - LD = I.$
 
Opalg said:
Effectively, this is just the product rule from calculus, which tells you that $$\frac d{dx}\bigl(xf(x)\bigr) = f(x) + x\frac d{dx}\bigl(f(x)\bigr).$$ If $D$ denotes differentiation, $L$ is the operation of multiplication by $x$, and $I$ is the identity operator, then that equation can be written as $$DL\bigl(f(x)\bigr) = I\bigl(f(x)\bigr) + LD\bigl(f(x)\bigr).$$ When you hide the $\bigl(f(x)\bigr)$s and write this as an operator equation, it says $DL = I + LD$, in other words $[D,L] = DL - LD = I.$

Thanks Opalg ...

Got the idea now ...

Thanks again,

Peter
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K