Fish Pond Challenge: Show Equilibrium Variation with $R_f$

Click For Summary
SUMMARY

The Fish Pond Challenge explores the dynamics of fish population in a pond modeled by the differential equation \(\frac{\mathrm{d} x}{\mathrm{d} t} = x\left ( 1-\frac{x}{x_0} \right )-R_f\), where \(R_f\) represents the constant rate of fish removal. For \(R_f < \frac{x_0}{4}\), the solution for \(x(t)\) approaches an equilibrium between \(\frac{x_0}{2}\) and \(x_0\). Conversely, if \(R_f \geq \frac{x_0}{4}\), the fish population will decline towards extinction. This analysis is rooted in the principles of the logistic growth model.

PREREQUISITES
  • Understanding of differential equations
  • Familiarity with logistic growth models
  • Knowledge of equilibrium points in dynamic systems
  • Basic concepts of population dynamics
NEXT STEPS
  • Study the solutions of first-order differential equations
  • Explore the implications of equilibrium stability in population models
  • Investigate the effects of varying \(R_f\) on fish population dynamics
  • Learn about the applications of logistic growth models in ecology
USEFUL FOR

Ecologists, mathematicians, and students studying population dynamics or differential equations will benefit from this discussion, particularly those interested in modeling biological systems and understanding the impact of resource removal on populations.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Suppose a pond contains $x(t)$ fish at time $t$, and $x(t)$ changes according to the DE:
\[\frac{\mathrm{d} x}{\mathrm{d} t} = x\left ( 1-\frac{x}{x_0} \right )-R_f\]
where $x_0$ is the equilibrium amount with no fishing and $R_f > 0$ is the constant rate of removal due to fishing. Assume $x(0) = \frac{x_0}{2}$.

(a). If $R_f < \frac{x_0}{4}$, solve for $x(t)$ and show that it tends to an equilibrium amount between $\frac{x_0}{2}$ and $x_0$.
(b). What happens if $R_f \geq \frac{x_0}{4}$?
 
Physics news on Phys.org
There was a https://mathhelpboards.com/calculus-10/help-derivative-22779.html on logistic growth with constant harvesting a few months ago.

In particular, if we start with the system given in post #5 there, and we non-dimensionalize by introducing a new time $\tau := (r K) t$ and a new unknown $x(\tau) := P(t(\tau))$, then in these new terms we have
\[
\frac{dx}{d\tau} = \frac{1}{rK}\frac{dP}{dt} = P\left(1 - \frac{P}{K}\right) - \frac{H}{rK} = x\left(1 - \frac{x}{K}\right) - \frac{H}{r K}.
\]
This is the system given in the challenge if we set $K := x_0$, $R_f := \frac{H}{r K}$ and we abuse notation by denoting non-dimensional time again with $t$ instead of $\tau$.

It is nice to see a problem on population dynamics, by the way.
 
Krylov said:
There was a https://mathhelpboards.com/calculus-10/help-derivative-22779.html on logistic growth with constant harvesting a few months ago.

In particular, if we start with the system given in post #5 there, and we non-dimensionalize by introducing a new time $\tau := (r K) t$ and a new unknown $x(\tau) := P(t(\tau))$, then in these new terms we have
\[
\frac{dx}{d\tau} = \frac{1}{rK}\frac{dP}{dt} = P\left(1 - \frac{P}{K}\right) - \frac{H}{rK} = x\left(1 - \frac{x}{K}\right) - \frac{H}{r K}.
\]
This is the system given in the challenge if we set $K := x_0$, $R_f := \frac{H}{r K}$ and we abuse notation by denoting non-dimensional time again with $t$ instead of $\tau$.

It is nice to see a problem on population dynamics, by the way.

Thankyou very much, Krylov! (Handshake)
May I ask for the answers of (a). and (b). in the challenge, based on the logistic growth model, you refer to?
 
Suggested solution:

\[\frac{\mathrm{d} x}{\mathrm{d} t}=x-\frac{x^2}{x_0} - R_f=-\frac{1}{x_0}\left ( x-\frac{x_0}{2} \right )^2+\left ( \frac{x_0}{4}-R_f \right ).\]

Let $\frac{1}{\sqrt{x_0}}\left ( x-\frac{x_0}{2} \right )=y(t)$, so that $\sqrt{x_0}dy = dx$ and $y(0) = 0$.
Also, let $a^2 = \left | \frac{x_0}{4}-R_f \right |$. In these terms the D.E. is

\[-dt = \frac{\sqrt{x_0}dy}{y^2\mp a^2}\]
where $a^2 = 0$ if $R_f = \frac{x_0}{4}$, negative if $R_f < \frac{x_0}{4}$, and positive if $R_f > \frac{x_0}{4}$.
(a). When $R_f < \frac{x_0}{4}$, $-t = \frac{\sqrt{x_0}}{2a}\ln \left ( \frac{a-y}{a+y} \right )+c$. Since $y(0) = 0$, we have $c = 0$, and so
\[e^{\frac{-2at}{\sqrt{x_0}}}= \frac{a-y}{a+y} = \frac{2a}{a+y}-1\]
i.e. \[y = \frac{2a}{1+e^{\frac{-2at}{\sqrt{x_0}}}}-a.\]

As $t \rightarrow \infty$, clearly $y \rightarrow a$, i.e.
\[\frac{1}{\sqrt{x_0}}\left ( x-\frac{x_0}{2} \right )\rightarrow \sqrt{\frac{x_0}{4}-R_f}\]

and so \[x \rightarrow \frac{x_0}{2}+\sqrt{\frac{x_0^2}{4}-R_fx_0}.\]

(b). When $R_f = \frac{x_0}{4}$, the original equation is

\[\frac{\mathrm{d} x}{\mathrm{d} t}=x-\frac{x^2}{x_0} - R_f=-\frac{1}{x_0}\left ( x-\frac{x_0}{2} \right )^2,\]
which has the obvious constant solution $x(t) = \frac{x_0}{2} = x(0)$.
When $R_f > \frac{x_0}{4}$, \[-t = \frac{\sqrt{x_0}}{a}\arctan \left ( \frac{y}{a} \right ) + c.\]

Again $c = 0$. Now, $-\tan \left ( \frac{at}{\sqrt{x_0}}\right )=\frac{y}{a}$, or $-\sqrt{R_f-\frac{x_0}{4}}\tan \left ( \frac{\sqrt{R_f-\frac{x_0}{4}}}{\sqrt{x_0}}t\right ) = \frac{1}{\sqrt{x_0}}\left ( x-\frac{x_0}{2} \right )$, and so
\[x = \frac{x_0}{2}-\sqrt{R_fx_0-\frac{x_0^2}{4}}\: \tan \left ( \sqrt{\frac{R_f}{x_0}-\frac{1}{4}}\: \cdot t\right ).\]
This is a decreasing function of $t$, which becomes $0$, when $\tan \left ( \sqrt{\frac{R_f}{x_0}-\frac{1}{4}}\: \cdot t\right ) = \frac{x_0}{2\sqrt{R_fx_0-\frac{x_0^2}{4}}}$.
So, the fish population becomes $0$ in a finite time.
 

Similar threads

  • · Replies 0 ·
Replies
0
Views
494
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
11K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
6K