Graduate Flat s-t 4d killing vectors via solving killing equation

  • Thread starter Thread starter binbagsss
  • Start date Start date
  • Tags Tags
    4d Flat Vectors
Click For Summary
The discussion focuses on solving the Killing equation in flat spacetime, specifically the relationship between vector fields and the metric tensor. It clarifies that the Killing equation involves lowered indices and is defined as the covariant derivative of the vector field. Participants express confusion about index notation and the distinction between covectors and vectors, particularly in the context of boosts and rotations. The conversation emphasizes the need to understand the implications of the metric on the Killing equation and how to derive solutions through differential equations. Ultimately, the thread highlights the complexity of working with indices and the necessity of careful manipulation in solving the equations.
  • #31
The discussion seems to overcomplicate things. What you want to solve is the Killing equation
$$\partial_{\mu} V_{\nu} + \partial_{\nu} V_{\mu}=0.$$
The trick to find the general solutions is to first take one more derivative of this equation:
$$\partial_{\rho} \partial_{\mu} V_{\nu} + \partial_{\rho} \partial_{\nu} V_{\mu}=0.$$
Now write down also the other two equations obtained from this by simply cyclically permute the indices:
$$\partial_{\mu} \partial_{\nu} V_{\rho} + \partial_{\mu} \partial_{\rho} V_{\nu}=0,\\
\partial_{\nu} \partial_{\rho} V_{\mu} + \partial_{\nu} \partial_{\mu} V_{\rho}=0.$$
Now add the first two and subtract the last equation. Using that partial derivatives commute, this leads to
$$\partial_{\rho} \partial_{\mu} V_{\nu}=0.$$
This means all 2nd deviatives of ##V_{\nu}## vanish, so that it must be a linear equation of ##x^{\mu}##:
$$V_{\nu}=T_{\nu} + \omega_{\nu \mu} x^{\mu}.$$
However, the 1st-order equation is more restrictive than the 2nd-order equation. So we must check this result with the first-order equation. Indeed
$$\partial_{\rho} V_{\nu} + \partial_{\nu} V_{\rho}=\omega_{\nu \rho} + \omega_{\rho \nu} \stackrel{!}{=} 0.$$
This implies that
$$\omega_{\mu \nu}=-\omega_{\nu \mu}.$$
Now remember that ##V_{\mu}## describes infinitesimal transformations of the coordinates that are symmetries. It's obvious that the ##T_{\nu}## define spacetime translations and the ##\omega_{\mu \nu}## Lorentz transformations (i.e., boosts and rotations and any combination thereof), and these are the well-known symmetries of Minkowski spacetime.
 
Last edited:
  • Like
Likes binbagsss
Physics news on Phys.org
  • #32
@binbagsss please stop quoting people's entire posts in your responses, it just clutters up the thread. Please quote only the particular things you are directly responding to.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
989
  • · Replies 32 ·
2
Replies
32
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 14 ·
Replies
14
Views
5K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K