Fluid Dynamics: Orthostatic Blood Pressure Equation

Click For Summary

Discussion Overview

The discussion revolves around the changes in blood pressure associated with different body positions (sitting, standing, lying down) and seeks to establish an equation that models these changes in an idealized system. The conversation touches on fluid dynamics principles and their application to physiological processes.

Discussion Character

  • Exploratory
  • Technical explanation
  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • One participant recalls the equation F=2gh and seeks verification or an alternative equation to describe blood pressure changes due to posture.
  • Another participant emphasizes the need to reconsider assumptions, noting that mechanisms controlling blood pressure are complex and involve hormonal responses and anatomical features, such as arterial valves in mammals.
  • A later reply acknowledges the complexity of blood pressure regulation and suggests a simple analogy for explaining orthostatic pressure, referencing the hydrostatic pressure head equation ΔP = ρgh.
  • It is mentioned that the pressure at the feet is higher than at the head when standing, and that lying down reduces the need for the heart to overcome orthostatic pressure.
  • One participant references a source text that discusses the complexities of cardiovascular and respiratory systems in relation to blood pressure modeling.

Areas of Agreement / Disagreement

Participants express differing views on the simplicity of the model proposed for blood pressure changes, with some arguing that the reality is more complex and others seeking a straightforward explanation. No consensus is reached regarding the adequacy of the proposed equations or models.

Contextual Notes

Limitations include the dependence on idealized assumptions and the complexity of physiological mechanisms that are not fully captured by simple equations. The discussion acknowledges that while simplified models can provide insights, they may not accurately reflect the full range of factors influencing blood pressure.

Umair Shariff
Messages
9
Reaction score
0
Hi everyone, I have been hunting all over the Internet for an explanation to changes in the blood pressure when sitting, standing or lying down. I know the complex mechanisms that are involved but I need an equation for an ideal system with the heart in the middle and the pressure that needs to be generated to drive blood to the brain in various positions.

It has been a long time since I studied physics and fluid dynamics, but this equation, F=2gh, keeps popping up in my head. I'd appreciate if someone could either verify and confirm this or provide me with an alternate equation

Thank you
 
Biology news on Phys.org
I can't give you a good answer. But you need to revisit some assumptions. I believe.
In mammals like giraffes there are special arterial valves to control BP in the head for example as it moves head up/down to browse on low shrubs. All mammals and people have ways to alter BP that involve hormones like vasodilators and valve structures in veins as well. So, you need to consider the "control" system as it were.

Correct me if you think I'm wrong here:
In other words there is a whole lot more going on than you seem to describe. Anything that simple would be interesting but unlikely to be usefully accurate.
http://www.merckmanuals.com/home/he...enous-disorders/overview-of-the-venous-system

Here is a link with a partial discussion( full doc behind a paywall, sorry, if useful hit the local college library):
http://link.springer.com/article/10.1007/s007910050030#page-1
 
Yes, I understand that the mechanisms involved to control blood pressure are varied including the means by which the body provides feedback on changes in pressure.

I am looking for a simple analogy to share with my friend so that he is better able to understand the difference in posture. This is by no means an academic venture and I need to be able to simply convey my meaning to him
jim mcnamara said:
I can't give you a good answer. But you need to revisit some assumptions. I believe.
In mammals like giraffes there are special arterial valves to control BP in the head for example as it moves head up/down to browse on low shrubs. All mammals and people have ways to alter BP that involve hormones like vasodilators and valve structures in veins as well. So, you need to consider the "control" system as it were.

Correct me if you think I'm wrong here:
In other words there is a whole lot more going on than you seem to describe. Anything that simple would be interesting but unlikely to be usefully accurate.
http://www.merckmanuals.com/home/he...enous-disorders/overview-of-the-venous-system

Here is a link with a partial discussion( full doc behind a paywall, sorry, if useful hit the local college library):
http://link.springer.com/article/10.1007/s007910050030#page-1
 
Umair Shariff said:
Hi everyone, I have been hunting all over the Internet for an explanation to changes in the blood pressure when sitting, standing or lying down. I know the complex mechanisms that are involved but I need an equation for an ideal system with the heart in the middle and the pressure that needs to be generated to drive blood to the brain in various positions.

It has been a long time since I studied physics and fluid dynamics, but this equation, F=2gh, keeps popping up in my head. I'd appreciate if someone could either verify and confirm this or provide me with an alternate equation

Thank you

The basic idea of orthostatic pressure comes simply from the hydrostatic pressure head ΔP = ρgh, where ρ is the fluid density and h the height above (or below) a reference. When standing, the pressure at your feet is higher than the pressure at your head, for example. When you are lying down, your heart does not have to overcome that much orthostatic pressure, and so when you stand up rapidly, the blood pressure in your head temporarily drops.

This simple model has been applied to orthostatic intolerance disorder and bone loss resulting from long-duration microgravity. The reality is more complex, and the corresponding models become more complex. A good source text is "Cardiovascular and Respiratory Systems: Modeling, Analysis and Control" (Batzel, Kappel, Schneditz and Tran).
 
  • Like
Likes   Reactions: berkeman and jim mcnamara

Similar threads

  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
11K
  • · Replies 7 ·
Replies
7
Views
9K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 48 ·
2
Replies
48
Views
6K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
2
Views
1K