Fluid Shear Paradox: Is There Shear?

AI Thread Summary
The discussion centers on the concept of shear in a fluid exhibiting forced vortex flow with constant angular velocity. It highlights that while Newton's shearing suggests strain due to differential linear velocity, this difference is only apparent to an external observer, not the fluid particles themselves. Consequently, the fluid behaves like a rigid body, leading to no deformation or shear. The conversation emphasizes the need to separate rigid body rotation from deformation to accurately assess strain in fluids. Ultimately, the consensus is that without differential angular velocity among fluid particles, no shear occurs.
vin300
Messages
602
Reaction score
4
A fluid with forced vortex flow and constant angular velocity is given. Newton's shearing says there must be strain due to differential linear velocity. The problem is, the difference of linear velocity is only visible to the external observer, the fluid particles themselves do not observe relative difference, thus accounting to only centrifuging and nothing else. So is there shear or not?
 
Physics news on Phys.org
vin300 said:
A fluid with forced vortex flow and constant angular velocity is given. Newton's shearing says there must be strain due to differential linear velocity. The problem is, the difference of linear velocity is only visible to the external observer, the fluid particles themselves do not observe relative difference, thus accounting to only centrifuging and nothing else. So is there shear or not?
The rate of deformation tensor is frame invariant. Please provide the velocity distribution, and we can discuss further.

Chet
 
vin300 said:
A fluid with forced vortex flow and constant angular velocity is given. Newton's shearing says there must be strain due to differential linear velocity. The problem is, the difference of linear velocity is only visible to the external observer, the fluid particles themselves do not observe relative difference, thus accounting to only centrifuging and nothing else. So is there shear or not?
If you are on a boat, floating on a lake, and spin around, the water also has differential linear velocity in your rotating frame. Is there strain in the water because of this?
 
Chestermiller said:
The rate of deformation tensor is frame invariant. Please provide the velocity distribution, and we can discuss further.

Chet
. There is nothing extraordinary to provide. I am taking the simplest case of bounded fluid like in a bucket (not a boat in the unending sea), which anybody can imagine to rotate in a similar fashion as a moment arm, and every particle rotates around the same axis making constant angular advances at constant times, with linear variation of linear velocity. I can imagine even though it is frankly speculation, that derivative of (r w) with respect to r would not provide any meaningful "strain" (w is ang. vel.)because there is no tangential strain in a rotating rod either. Clearly there has to be a differential of "angular velocity" in this case for fluid particles to be rubbing past each other and causing distortions.
 
vin300 said:
. There is nothing extraordinary to provide. I am taking the simplest case of bounded fluid like in a bucket (not a boat in the unending sea), which anybody can imagine to rotate in a similar fashion as a moment arm, and every particle rotates around the same axis making constant angular advances at constant times, with linear variation of linear velocity. I can imagine even though it is frankly speculation, that derivative of (r w) with respect to r would not provide any meaningful "strain" (w is ang. vel.)because there is no tangential strain in a rotating rod either. Clearly there has to be a differential of "angular velocity" in this case for fluid particles to be rubbing past each other and causing distortions.
Yes, you are correct. The fluid is rotating as a rigid body here, and there is no deformation occurring. To get rates of deformation in a fluid, we need to subtract out the rigid body rotations of the fluid elements. We do this by resolving the velocity gradient tensor into an antisymmetric part (the vorticity tensor, which accounts for rotation) and the symmetric part (the rate of deformation tensor), which accounts for rates of strain. In Newtonian fluid mechanics, it is only the symmetric part of the velocity gradient tensor that determines the stress tensor.

Chet
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Back
Top