For given Hamiltonian, is spin conserved?

  • Thread starter Thread starter Leicester Fantasy
  • Start date Start date
  • Tags Tags
    Hamiltonian Spin
Leicester Fantasy
Messages
2
Reaction score
0
Poster has been reminded to use the HH Template and show their work
A system consisting of two spins is described by the Hamiltonian (b>0)
H = aσ1 ⋅ σ2 + b1z - σ2z)
where a and b are constants.
(a) Is the total spin S = ½ (σ1 + σ2) conserved? Which components of S, if any, are conserved?
(b) Find the eigenvalues of H and the corresponding eigenstates in terms of the eigenstates of the total spin S.
 
Physics news on Phys.org
Welcome in PF!
Next time, please follow the given template if you post under the homework section.

As for your current problem, can you please show us your own initial attempt?
 
Thank you for your attention sir. I'm first time PH, so I made a mistake sorry.
I can't understand how do I know the spins of the system if there is given a Hamiltoninan.
In (a), I think that there's no term for time, so the Hamiltoninan does not change along the time. But I don't know the how to solve this problem.
In (b), should I use some spinors? How do I express the eigenstates? matrix, vector, or ket notation? would you give me a example, please?
 
For (a), you are actually asked to calculate ##[H,S_x]##, ##[H,S_y]##, and ##[H,S_z]##. Then find which of them vanish, which ones do not. Here ##S_i## for ##i=x,y,z## are the component of the total spin.
 
To solve this, I first used the units to work out that a= m* a/m, i.e. t=z/λ. This would allow you to determine the time duration within an interval section by section and then add this to the previous ones to obtain the age of the respective layer. However, this would require a constant thickness per year for each interval. However, since this is most likely not the case, my next consideration was that the age must be the integral of a 1/λ(z) function, which I cannot model.
Back
Top