Force acting on a charge across a hybrid medium

Click For Summary
The force acting on charge q2 is influenced by the electric field in the dielectric medium K2, calculated as E = kq1/(K2a^2). The force between charges q1 and q2 is given by F21 = kq1q2/(K2a^2), assuming the entire distance a is within dielectric K2. At the boundary between different dielectrics, the electric field changes and is expressed as kq1/(K1(3/4a)^2). The electric field strength is not continuous across the boundary, as it varies with the dielectric constants K1 and K2. Understanding these principles is crucial for analyzing forces in hybrid dielectric media.
vcsharp2003
Messages
913
Reaction score
179
Homework Statement
Two charge ##q_1## and ##q_2## are separated by two different dielectrics as shown in the diagram, having dielectric constants of ##K_1## and ##K_2##. The two charges are separated by a distance ##a##. What would be the force on charge ##q_2## due to charge ##q_1##?
Relevant Equations
##F = \dfrac {kq_1q_2} {Kr^2}##, where k is Coulomb's constant and K is dielectric constant, F is force of attraction between the two charges ##q_1## and ##q_2## that are separated by a distance ##r##

##E = \dfrac {kq} {Kr^2}##, where E is electric field due to a charge ##q## at a distance ##r## in medium having a dielectric constant ##K##
The force on charge ##q_2## will depend on the electric field in medium with dielectric ##K_2##.

Electric field in this second dielectric due to ##q_1## is ##E = \dfrac {kq_1} {K_2r^2}## where r would be the distance from ##q_1##.
So, the electric field at the point where charge ##q_2## is there would be ##E = \dfrac {kq_1} {K_2a^2}##

Therefore, force on second charge due to first charge would ##F_{21} = \dfrac {kq_1q_2} {K_2a^2} ##.
IMG_20211023_134338__01.jpg
 
Last edited:
Physics news on Phys.org
Your answer would be correct if the entire distance ##a## had dielectric ##K_2##. The electric field at the boundary between dielectrics is ##\dfrac{kq_1}{K_1(\frac{3}{4}a)^2}##. What happens to it when you cross that boundary? In other words, what is continuous across the boundary?
 
  • Like
Likes vcsharp2003
kuruman said:
Your answer would be correct if the entire distance ##a## had dielectric ##K_2##. The electric field at the boundary between dielectrics is ##\dfrac{kq_1}{K_1(\frac{3}{4}a)^2}##. What happens to it when you cross that boundary? In other words, what is continuous across the boundary?
Thankyou for the answer.

My understanding is that the electric field in a medium becomes ##\dfrac {1} {K} ## times the electric field without any medium i.e. when there is vacuum, and I based my answer on this fact.

When the boundary of dielectrics is crossed from ##K_1## to ##K_2## then the electric field is still there except now it has a different formula i.e. a different strength, so electric field strength should not be a continuous function.
 
Last edited:
If have close pipe system with water inside pressurized at P1= 200 000Pa absolute, density 1000kg/m3, wider pipe diameter=2cm, contraction pipe diameter=1.49cm, that is contraction area ratio A1/A2=1.8 a) If water is stationary(pump OFF) and if I drill a hole anywhere at pipe, water will leak out, because pressure(200kPa) inside is higher than atmospheric pressure (101 325Pa). b)If I turn on pump and water start flowing with with v1=10m/s in A1 wider section, from Bernoulli equation I...

Similar threads

Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
993
Replies
23
Views
3K
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
6
Views
2K
Replies
1
Views
738
  • · Replies 10 ·
Replies
10
Views
3K