Force on a point charge due to a sphere

andre220
Messages
75
Reaction score
1

Homework Statement


An insulated conducting sphere of radius ##R##, carrying a total charge of ##Q##, is in the field of a point charge ##q## of the same sign. Assume ##q\ll Q##. Calculate and plot the force exerted by the sphere on ##q## as a function of distance from the center. In particular, for ##q/Q = 0.1##, calculate the point at which the direction of force reverses.

Homework Equations


The electric field due a point charge $$E_\mathrm{pt} = \frac{q}{4\pi\epsilon_0 r^2}$$
$$\Phi(r,\theta) = \sum\limits_{l=0}^\infty \left(A_l r^l + \frac{B_l}{r^{l+1}}\right) P_l\left(\cos{\theta}\right)$$
$$\vec{E} = -\vec{\nabla}\Phi$$

The Attempt at a Solution


So since the solution is wanted as a function of distance from the center of the sphere, I am using the legendre solutions to laplace's equation. The boundary conditions are ##\Phi(R,\theta) = 0## and ##E_\mathrm{in} -E_\mathrm{out} = -\sigma/\epsilon_0 \implies E_\mathrm{point} - \nabla_r \Phi =-\frac{4\pi R^2}{\epsilon_0}##
Then once the boundary conditions are satisfied then the force is just ##F = qE_\mathrm{sphere}##.

So for the potential of the sphere:
$$\Phi(r) = A_0 + \frac{B_0}{r}$$
$$\Phi(R) = 0 = A_0 + \frac{B_0}{R}\implies B_0 = -A_0 R\implies \Phi(r) = A_0\left(1-\frac{R}{r}\right)$$
$$E_\mathrm{sphere} = -\frac{2 A_0 R}{r^2}$$
Then, applying the boundary conditions at the surface of the sphere:
$$\frac{q}{4\pi\epsilon_0 R^2} + \frac{2 A_0}{R} = -\frac{4\pi R^2 Q}{\epsilon_0}\implies A_0 = \frac{-q + 16\pi^2 R^4 Q}{8\pi\epsilon_0 R}$$

Then,
$$E_\mathrm{sphere} = \frac{1}{r^2}\left(\frac{q + 16\pi^2 Q R^4}{4\pi\epsilon_0}\right)$$
Then from here I would just do force by multiplying by ##q## of the point charge and then find the point at which the force reverses.

Alot to take in, but does this seem correct thus far?
 
Physics news on Phys.org
andre220 said:
So for the potential of the sphere:
$$\Phi(r) = A_0 + \frac{B_0}{r}$$
Where does that come from? I think the idea of the conducting sphere is the non-uniform charge distribution. The electric field and therefore the potential should depend on θ.
 
Right, then I don't see how I can get the constants ##A_1, B_1## with only two boundary conditions.
Thats why I only chose to keep ##l = 0## terms.
 
There are formulas how a charge q at some distance L will influence charges on a conducting sphere. It's possible to derive them but I guess that is not necessary here.
Q does not matter for this induced charge.
 
Is this method correct that I am using? Or should I use an image method here?
 
Your method is not incorrect, but it involves an infinite series. I would try the image method first.
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top