1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Force on a wire carrying current

  1. Jun 9, 2012 #1
    It is given in my book. hat F=B I l sin theta where theta is the angle between B and the current I... I guess this is no right.. I mean, how would the current make an angle with B, it should b the length of wire itself... Secondly F=Bqv is the reason behind a charged particle which enter perpendicularly to a magnetic field moves in a circle.. My doubt is that at point, this point charge will be inline with the field line.. From where will it get force at that point.. Talking about the quarter circle... I need more clarification and it would be more than amazing if there are some illustrative diagrams!
     
  2. jcsd
  3. Jun 9, 2012 #2
    The angle in your first equation IS the angle between the current and the field lines. If you imagine a uniform B field you can also imagine a wire in this field pointing in various different directions.

    Current is a vector, and only the component of the current vector that cuts across the field lines causes the force. When the current is at right angles to the field, θ = 90 and sin θ =1. This means that all of the current contributes to the force so you get the maximum force = BIL.

    On the other hand, when the current is parallel to the field, θ = 0 and sin θ = 0. This makes your force = BIL × 0 = 0 as there is no component of the current cutting across the field lines.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook