Form of radial velocity along null geodesic under the Kerr metric

  • Thread starter Thread starter Bertin
  • Start date Start date
  • Tags Tags
    Kerr metric
Bertin
Messages
12
Reaction score
6
Homework Statement
Given the affine parameter [itex]\lambda[/itex] of a null geodesic on the equator ([itex]\theta = \pi/2[/itex]), prove that that the [itex]r[/itex] coordinate satisfies the following equation:
$$\left(\frac{dr}{d\lambda}\right)^2 = \frac{\Sigma^2}{\rho^4}(E - L W_-(r))(E - L W_+(r))$$
for some [itex]W(r)[/itex] that might depend on [itex]E,L[/itex] and [itex]r[/itex], and for [itex]E, L[/itex] constants of motion.
Relevant Equations
The Kerr metric, in the Boyer-Lindquist coordinates and on the equator, reads
$$ds^2 = -(1 - \frac{R}{r})dt^2 - \frac{R}{r}a (dtd\phi + d\phi dt) + \frac{r^2}{r^2 + a^2 - R r} dr^2 + \frac{\Sigma^2}{r^2} d\phi^2$$
for [itex]\Sigma^2 = r^4 + a^2 r^2 + R r a[/itex].
By the symmetries of the metric, k = \partial_t and l = \partial_\phi are Killing vectors. Since they are Killing vectors, they satisfy k_\mu \dot{x}^\mu = E and l_\mu \dot{x}^\mu = L, for the same constants appearing in the expression we must prove, and where the dot means the derivative w.r.t. to the affine parameter. Hence it follows that
$$E = -(1 - \frac{R}{r})\dot{t} - \frac{R}{r}a\dot{\phi}$$
$$L = -\frac{R}{r}a\dot{t} + \frac{\Sigma^2}{r^2}\dot{\phi}$$.
Moreover, since x(\lambda) is a null geodesic, we have that \dot{x}_\mu\dot{x}^\mu = 0, whence
$$ 0 = \frac{r^2}{r^2 + a^2 - R r}\dot{r}^2 - (1 - \frac{R}{r})\dot{t}^2 - 2\frac{R}{r}a\dot{t}\dot{\phi} + \frac{\Sigma^2}{r^2}\dot{\phi}^2$$

We can then solve the equations of E and L for \dot{t} and \dot{\phi} to later replace those values inside last equation. Nevertheless, this leads to a very messy expression for \dot{r}^2 that does not look that the one we must prove, first and foremost because the resulting expression doesn't seem to include any \frac{\Sigma^2}{r^4}E^2 (unless both Mathematica and I are missing a possible simplification, which could be the case), so I probably have done some mistake (not calculatory, though, because my results agree with Mathematica) or I am missing something.

I would appreciate if someone could show me how do we derive above expression. Thank you in advance.
 
Last edited:
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top