cianfa72
- 2,820
- 298
- TL;DR Summary
- About the formal derivation of a (meta)-statement from axioms of Peano Arithmetic formal system
I was reading a Bachelor thesis on Peano Arithmetic (PA). PA has the following axioms (not including the induction schema):
$$\begin{align}
& (A1) ~~~~ \forall x \neg (x + 1 = 0) \nonumber \\
& (A2) ~~~~ \forall xy (x + 1 =y + 1 \to x = y) \nonumber \\
& (A3) ~~~~ \forall x (x + 0 = x) \nonumber \\
& (A4) ~~~~ \forall xy (x + (y +1) = (x + y ) + 1) \nonumber \\
& (A5) ~~~~ \forall x (x \cdot 0 = 0) \nonumber \\
& (A6) ~~~~ \forall xy (x \cdot (y + 1) = (x \cdot y) + x) \nonumber
\end{align}
$$
The thesis claims the (meta)-statement ##\text{PA} \vdash \varphi(0)## where ##\varphi(z)## is the open well-formed formula (wff) $$\forall xy (x + (y + z) = (x + y) + z)$$ However I'm not sure how, from a formal viewpoint, it follows from axiom A3. Can you kindly help me ?
$$\begin{align}
& (A1) ~~~~ \forall x \neg (x + 1 = 0) \nonumber \\
& (A2) ~~~~ \forall xy (x + 1 =y + 1 \to x = y) \nonumber \\
& (A3) ~~~~ \forall x (x + 0 = x) \nonumber \\
& (A4) ~~~~ \forall xy (x + (y +1) = (x + y ) + 1) \nonumber \\
& (A5) ~~~~ \forall x (x \cdot 0 = 0) \nonumber \\
& (A6) ~~~~ \forall xy (x \cdot (y + 1) = (x \cdot y) + x) \nonumber
\end{align}
$$
The thesis claims the (meta)-statement ##\text{PA} \vdash \varphi(0)## where ##\varphi(z)## is the open well-formed formula (wff) $$\forall xy (x + (y + z) = (x + y) + z)$$ However I'm not sure how, from a formal viewpoint, it follows from axiom A3. Can you kindly help me ?
Last edited: