Let us denote the 2 sequence summations by ##S_n## and ##T_n## for any ##n \in \mathbb{N}##, i.e. $$S_n := \dfrac{x_1}{1} + \dfrac{x_4}{2} + \dfrac{x_9}{3} + ... + \dfrac{x_{n^2}}{n}$$ and
$$T_n := \dfrac{x_1}{1} + \dfrac{x_2}{2} + \dfrac{x_3}{3} + ... + \dfrac{x_n}{n}$$
Then, $$
T_{(n+1)^2-1} = \sum_{i=1}^{n} \sum_{j=i^2}^{(i+1)^2-1} \dfrac{x_j}{j} = \sum_{i=1}^{n} \dfrac{x_{i^2}}{i^2} + \sum_{i=1}^{n} \sum_{j=i^2+1}^{(i+1)^2-1} \dfrac{x_j}{j}
$$
(1)
$$
\sum_{i=1}^{n} \dfrac{x_{i^2}}{i^2} \leq \sum_{i=1}^{n} \dfrac{x_{i^2}}{i} = S_n
$$
(2)
Since ##(x_n)_{n \in \mathbb{N}}## is a strictly decreasing sequence of positive numbers, ##\dfrac{x_j}{j} < \dfrac{x_{i^2}}{i^2}## if for any ##i, j \in \mathbb{N}## with ##j > i^2##. Therefore,
$$
\sum_{j=i^2+1}^{(i+1)^2-1} \dfrac{x_j}{j} < \sum_{j=i^2+1}^{(i+1)^2-1} \dfrac{x_{i^2}}{i} = ((i+1)^2-1-i^2)\dfrac{x_{i^2}}{i^2} = 2i \dfrac{x_{i^2}}{i^2} = \dfrac{2x_{i^2}}{i}
\Rightarrow \sum_{i=1}^{n} \sum_{j=i^2+1}^{(i+1)^2-1} \dfrac{x_j}{j} < 2S_n
$$
(3)
Using equations/inequalities
(2) and
(3) in
(1), we get ##T_{(n+1)^2-1} < S_n + 2S_n \equiv 3S_n## for any positive integer ##n##. And since ##T_j > T_i## for any ##j > i## (since ##T_n## is a sum of a sequence consisting of only positive numbers), it follows that ##T_n < T_{(n+1)^2-1} < 3S_n## for any ##n \in \mathbb{N}##.
(4)
And since it is given that ##S_n \leq 1## for any ##n##,
(4) implies that ##T_n < 3## for any ##n##, which is equivalent to saying that ##\dfrac{x_1}{1} + \dfrac{x_2}{2} + \dfrac{x_3}{3} + ... + \dfrac{x_n}{n} < 3## for any ##n##. Hence proved.