Mech Engr - Heat Transfer across Cylindrical Tube
Start with Fourier's Law of Heat Conduction
ref1
<br />
\renewcommand{\vec}[1]{\mbox{\boldmath $ #1 $}} <br />
\vec{Q} =-k \bar{\nabla} T
For this geometry (cylindrical tubing) by Fourier's Law,
ref2
Q=k A \left (\frac {\Delta T}{\Delta r} \right )
Heat Transfer Across Length of Cylindrical Tubing
\mbox {\Huge Q= $\frac {2 \pi k L (T_i-T_o)}{ln (\frac{r_o}{r_i}) }$ }
k - thermal conductivity of material [BTU/(hr-ft-deg F)]
L - length of tube (ft)
T_i - temperature along inside surface of tube (deg F)
T_o - temperature along outside surface of tube (deg F)
r_o - outside tube radius (ft)
r_i - inside tube radius (ft)
Q - heat transfer (BTU/hr)
Heat Flux - Heat Transfer Rate per Unit Area
ref3
Q^{''} = \frac {Q}{A} \ \ \ \ \ \ \ \left ( \frac {BTU}{hr \cdot ft^2} \right )
For this geometry
A = 2 \pi r_o L \ \ \ \ \ \ (ft^2)