Formulas for computing composite function

Click For Summary
The discussion centers on two definitions of the function h(x), where one version states h(x) = 0 for x ≤ 0 and h(x) = x^2 for x > 0, while the book presents h(x) = 0 for x < 0 and h(x) = x^2 for x ≥ 0. Both definitions yield the same function values, particularly at x = 0, where both yield h(0) = 0. The participants argue that since the function values do not differ across the defined intervals, both formulations are valid. Ultimately, the conclusion is that both definitions represent the same function h.
rxh140630
Messages
60
Reaction score
11
Homework Statement
Let f and g be two functions defined as follows:

[itex] f(x) = \frac{x+|x|}{2}[/itex]

[itex] g(x) = \begin{cases}
x \text{ for x < 0} \\
x^2 \text{ for x ≥ 0}

\end{cases} [/itex]

Find a formula, or formulas, for computing the composite function h(x) = f[g(x)]
Relevant Equations
f ο g = f[g(x)]
h(x) = 0 for x ≤ 0
h(x) = x^2 for x>0

But my book says

h(x) = 0 for x<0
h(x) = x^2 for x≥0

Can my solution (the first one) work as well? Because the actual function value at x = 0 is zero. I feel like my solution is more elegant.
 
Physics news on Phys.org
Yes, the both give the same result.
 
  • Like
Likes rxh140630
rxh140630 said:
h(x) = 0 for x ≤ 0
h(x) = x^2 for x>0

But my book says

h(x) = 0 for x<0
h(x) = x^2 for x≥0

These define the same function ##h##. To see this, you can ask at what points do the function values differ?
 
  • Like
Likes rxh140630
PeroK said:
These define the same function ##h##. To see this, you can ask at what points do the function values differ?

They do not differ because x^2 at x=0 = 0, if we choose to use the authors definition.

Since they do not differ then they must be the same.
 
Last edited:
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K