- #1
danmel413
- 12
- 0
Homework Statement
A rectangular box measuring a x b x c has all its walls at temperature T1 except for the one at z=c which is held at temperature T2. When the box comes to equilibrium, the temperature function T(x,y,z) satisfies ∂T/∂t =D∇2T with the time derivative on the left equal to zero. Find the temperature T in the box in the form T(x,y,z) = T1 + τ(x,y,z) where τ is the Fourier series τ(x,y,z)=∑∑anmsin(nπx/a)sin(mπy/b)f(z).
Find f(z) and find anm
Homework Equations
D=kA/mc
All others listed in the question
The Attempt at a Solution
so I see that it's sin functions in x and y in the Fourier series because there are zero's at 0 and a, b for both. However since there's only one 0 for z at z=0, I'm assuming that f(z) has to be sinh. But I don't think I can just take the argument there to be jπz/c.
If someone can bump me forward I'm sure I can figure the rest of the question out.