1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Fourier Series and orthogonality

  1. Mar 3, 2015 #1
    Can someone explain the concept to me. Does it mean the the a's of n and b's of n are 90 degrees apart? I know the inner-product of the integral is 0 if the two are orthogonal.
     
  2. jcsd
  3. Mar 3, 2015 #2

    LCKurtz

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    I think you mean ##a_n## and ##b_n##. And I guess you are talking about the Fourier coefficients. They are just numbers and it doesn't make any sense to talk about numbers "being 90 degrees apart".

    Orthogonality is a generalization of "perpendicular". Two nonzero vectors in 3D are perpendicular if their dot product is zero:$$
    \langle a_1,a_2,a_3\rangle \cdot \langle b_1,b_2,b_3\rangle = a_1b_1 + a_2b_2 + a_3b_3 = 0$$This idea is generalized to functions by the definition: Functions ##f## and ##g## are orthogonal with respect to a weight function ##w(t)>0## on an interval ##[a,b]## if ##\int_a^b f(t)g(t)w(t)~dt = 0##. Often in classical Fourier series, ##w(t) = 1## Here the sum in the dot product corresponds to the integral of the two functions.

    The fact that the functions ##\{\sin(\frac{n\pi x}{p}),\cos(\frac{n\pi x}{p})\}## are orthogonal on ##[-p,p]## is what allows you to get nice closed formulas for the coefficients ##a_n## and ##b_n## in Fourier series. Any text on FS will explain this in detail.
     
  4. Mar 3, 2015 #3

    ElijahRockers

    User Avatar
    Gold Member

    If that's a little wordy for you, maybe I can dumb it down. Just keep in mind I am only now learning this stuff myself.

    Remember how you used {i, j, k} to represent orthogonal unit vectors? It's the same idea with {cos(x), cos(2x), ... , cos(Nx)}.
    The same way you could represent any 3D vector as xi + yj + zk, you can represent any function as a sum of sines and cosines of varying frequency.

    cos(1x) is orthogonal to cos(.9999x) -> meaning the slightest variation in frequency will result in a pair of orthogonal functions...

    I think. Anyone in the know, please feel free to correct or confirm my suspicions.

    EDIT: Cut out some stuff I wrote that was even confusing to me.
     
  5. Mar 3, 2015 #4

    LCKurtz

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    No. That isn't true. Orthogonality depends very much on the particular frequencies and the interval of definition.
     
  6. Mar 3, 2015 #5

    ElijahRockers

    User Avatar
    Gold Member

    We learned in class that {cos(x), cos(2x), ... , cos(Nx)} forms an orthogonal set... is this true?
    Not to hijack the thread, but I'm trying to get some visual intuition on how orthogonality depends on the frequency.
     
  7. Mar 3, 2015 #6

    LCKurtz

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    And it depends on the interval. Just because ##\int_{-\pi}^{\pi} \cos(mx)\cos(nx)~dx = 0## if ##m\ne n## doesn't mean, for example, that ##\int_{0}^{\frac \pi 4} \cos(mx)\cos(nx)~dx = 0##. Also, that set of cosines are orthogonal to each other, not to other cosines with different frequencies. So you wouldn't expect, for example, that ##\int_{-\pi}^{\pi} \cos(x)\cos(.9999x)~dx = 0## as you mentioned.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Fourier Series and orthogonality
  1. Fourier series (Replies: 10)

  2. Fourier Series (Replies: 1)

  3. Fourier Series (Replies: 6)

Loading...