frenzal_dude
- 76
- 0
Homework Statement
Hi, I need to find the Fourier Transform of: g(t)=\frac{1}{x}e^{\frac{-\pi t^2}{x^2}}
Homework Equations
G(f)=\int_{-\infty}^{\infty }g(t)e^{-j2\pi ft}dt<br /> \therefore <br /> G(f)=\int_{-\infty}^{\infty }\frac{1}{x}e^{\frac{-\pi t^2}{x^2}-j2\pi ft}dt
The Attempt at a Solution
G(f)=\frac{1}{x}[\frac{x^2e^{-t(\frac{\pi t}{x^2}+j2\pi f)}}{-2\pi t-j2\pi fx^2}] (limits:t=\infty,t=-\infty)
If you sub in t=infinity or t=-infinity, both will give you 0 because t is on the denominator.
Thanks for the help in advance! :)
Last edited: