gordon831
- 9
- 0
Hey Physics Forums,
Grading an assignment, the current topic is continuous Fourier Transforms. They're trying to prove the convenient property:
\mathcal{F} \left[ \frac{d^n}{dx^n} f(x) \right] = (i \omega)^n \mathcal{F} \left[ f(x) \right]
So there's a simple way to get it:
Let f(x) be represented by it's Inverse Fourier Transform f(x) = \mathcal{F}^{-1} \left[ g( \omega ) \right] = \frac{1}{2 \pi} \int_{-\infty}^{\infty} g( \omega )e^{i \omega x} d \omega
Then,
\frac{d^n}{d x^n} f(x) = \frac{d^n}{d x^n} \frac{1}{2 \pi} \int_{-\infty}^{\infty} g( \omega )e^{i \omega x} d \omega = \frac{1}{2 \pi} \int_{-\infty}^{\infty} g( \omega ) \frac{d^n}{d x^n}e^{i \omega x} d \omega = (i \omega)^n \frac{1}{2 \pi} \int_{-\infty}^{\infty} g( \omega ) e^{i \omega x} d \omega = (i \omega)^n \mathcal{F} \left[ f(x) \right]
However, I have some people with a different method. They directly transform the entire expression, and apply integration by parts recursively until they obtain:
\left. (i \omega)^0 \frac{d^{n-1}}{dx^{n-1}}[f(x)]e^{-i \omega x} + (i \omega)^1 \frac{d^{n-2}}{dx^{n-2}}[f(x)]e^{-i \omega x} + \ldots \hspace{10px} \right|^{\infty}_{-\infty} + (i \omega)^n \int f(x) e^{-i \omega x}dx
The claim is that when the delimiter is applied, \lim_{x \to \pm \infty} e^{-i \omega x} = 0. I'm not sure if this is true. e^{-i \omega x} = \cos(\omega x) - i \sin(\omega x) which clearly oscillates. Can anyone else confirm this?
Grading an assignment, the current topic is continuous Fourier Transforms. They're trying to prove the convenient property:
\mathcal{F} \left[ \frac{d^n}{dx^n} f(x) \right] = (i \omega)^n \mathcal{F} \left[ f(x) \right]
So there's a simple way to get it:
Let f(x) be represented by it's Inverse Fourier Transform f(x) = \mathcal{F}^{-1} \left[ g( \omega ) \right] = \frac{1}{2 \pi} \int_{-\infty}^{\infty} g( \omega )e^{i \omega x} d \omega
Then,
\frac{d^n}{d x^n} f(x) = \frac{d^n}{d x^n} \frac{1}{2 \pi} \int_{-\infty}^{\infty} g( \omega )e^{i \omega x} d \omega = \frac{1}{2 \pi} \int_{-\infty}^{\infty} g( \omega ) \frac{d^n}{d x^n}e^{i \omega x} d \omega = (i \omega)^n \frac{1}{2 \pi} \int_{-\infty}^{\infty} g( \omega ) e^{i \omega x} d \omega = (i \omega)^n \mathcal{F} \left[ f(x) \right]
However, I have some people with a different method. They directly transform the entire expression, and apply integration by parts recursively until they obtain:
\left. (i \omega)^0 \frac{d^{n-1}}{dx^{n-1}}[f(x)]e^{-i \omega x} + (i \omega)^1 \frac{d^{n-2}}{dx^{n-2}}[f(x)]e^{-i \omega x} + \ldots \hspace{10px} \right|^{\infty}_{-\infty} + (i \omega)^n \int f(x) e^{-i \omega x}dx
The claim is that when the delimiter is applied, \lim_{x \to \pm \infty} e^{-i \omega x} = 0. I'm not sure if this is true. e^{-i \omega x} = \cos(\omega x) - i \sin(\omega x) which clearly oscillates. Can anyone else confirm this?