I Free electron gas band structure?

How can I see, by looking at a band structure if the substance in question can be viewed as a free electron gas (FEG) or not?

What characterizes a FEG in a bandstructure plot?

Thanks in advance!
 

ZapperZ

Staff Emeritus
Science Advisor
Education Advisor
Insights Author
2018 Award
34,665
3,596
How can I see, by looking at a band structure if the substance in question can be viewed as a free electron gas (FEG) or not?

What characterizes a FEG in a bandstructure plot?

Thanks in advance!
I'm rather surprised that you asked this, considering what you wrote in this post:

https://www.physicsforums.com/threads/band-structure-diagrams.966249/#post-6134363

If you have derived the dispersion relation for a free-electron gas, then what exactly is the issue here? Do you not know what
[tex]E(k) = \frac{\hbar^2k^2}{2m}[/tex]
looks like graphically?

Zz.
 
I'm rather surprised that you asked this, considering what you wrote in this post:

https://www.physicsforums.com/threads/band-structure-diagrams.966249/#post-6134363

If you have derived the dispersion relation for a free-electron gas, then what exactly is the issue here? Do you not know what
[tex]E(k) = \frac{\hbar^2k^2}{2m}[/tex]
looks like graphically?

Zz.
Well, the electrons will occupy parabolic bands, but that's true for many band structures, all through the are not free electron gases, so there must be something else than that simple argument allowing me to by looking at a plot see if its a free electron gas, such as no splitting between bands?
 
430
7
How can I see, by looking at a band structure if the substance in question can be viewed as a free electron gas (FEG) or not?

What characterizes a FEG in a bandstructure plot?

Thanks in advance!
I guess you are looking for the band structure of the nearly free electron in a crystal, right?
For that, you can transfer the free electron E-k relation to the first Brillouin zone.
 

fluidistic

Gold Member
3,542
72
Well, the electrons will occupy parabolic bands, but that's true for many band structures, all through the are not free electron gases, so there must be something else than that simple argument allowing me to by looking at a plot see if its a free electron gas, such as no splitting between bands?
Not really. The perfectly parabolic dispersion relation is a signature of a free electron model, at least as far as I understand. If the electrons interact weakly with the ions making the solid, a better description of the electrons can be obtained by using the nearly free electron model, that do take into account a potential of interaction between the electrons and the lattice. As a result, the dispersion relation is almost parabolic, but it has gaps, and it isn't quite parabolic due to a distorsion near the Brillouin zone (BZ). As you can imagine, if you complicate even more the description of the properties of the electrons, there is all the reasons in the world to guess that the dispersion relation will tend not to be a perfect parabola, which differs from the FEM.

@Lord Jestocost I would rather not look at the Fermi surface, because if we take a look at the one of lithium, it looks like a sphere that has no gap, i.e. it is entirely within the first BZ, even though it isn't exactly spherical. However the density of state near the Fermi energy differs somewhat compared to that of the FEM. So I wouldn't think that taking a look at the Fermi surface is a good indicator, but I may be wrong
 

Lord Jestocost

Gold Member
2018 Award
296
175
@fluidistic

You are right! The answer to the OP’s question
How can I see, by looking at a band structure if the substance in question can be viewed as a free electron gas (FEG) or not?
should be: Physically, electrons in metals can in principle not be viewed as free electron gases, as the electrons always experience the crystal potential. Some metals have nearly spherical Fermi surfaces, i.e., the crystal potential does not “distort” too much the free electron gas Fermi surface.
 

Want to reply to this thread?

"Free electron gas band structure?" You must log in or register to reply here.

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving
Top