Can someone help with what must be a simple math issue that I'm stuck on. Shankar ("Principles of Quantum Mechanics" p. 153) evaluates the propagator for a free particle in Equation 5.1.10. A scan of the chapter is available here:(adsbygoogle = window.adsbygoogle || []).push({});

http://isites.harvard.edu/fs/docs/icb.topic1294975.files/Shankar - path integrals.pdf

The integral which precedes Eqn. 5.1.10 is not a traditional Gaussian of the form exp(-a(x+b)^2)

with Re(a)>0. Instead the integrand (after completing the square) is of the above form, but with Re(a)=0, i.e., a is a purely imaginary number. Therefore, the familiar closed form expression (which Shankar references in Appendix A.2) does not apply. The integrand oscillates and is not absolutely integrable; it may be integrable and expressible in elementary terms as shown in Eqn. 5.1.10, but that does not seem to follow from the traditional Gaussian integral of exp{-a(x+b)^2} with Re(a)>0.

To be more precise, completing the square explains the factor exp{ im(x - x')^2 / 2ћt } in Eqn 5.5.10. What remains is simply to evaluate (after a few changes of variable) the integral of exp(-iq^2)dq, a purely oscillatory function.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Free particle propagator - Shankar POQM Eqn. 5.1.10, p. 153

**Physics Forums | Science Articles, Homework Help, Discussion**