Functions forming a vector space (1 Viewer)

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

881
37
1. The problem statement, all variables and given/known data
1.1.3
1) Do functions that vanish at the endpoints x=0 and L=0 form a vector space?
2) How about periodic functions? obeying f(0)=f(L) ?
3) How about functions that obey f(0)=4 ?

If the functions do not qualify, list what go wrong.


2. Relevant equations
upload_2018-8-12_22-22-57.png


3. The attempt at a solution
1) Considering a set of functions which vanish at the end points x = {0,L}. Let's say f,g,h belong to this set of functions. Then all the properties in the above image are verified. So, this set of functions form a vector space.
2) Similarly, for 2 also all properties get verified except existence of a null vector. Can a function h(x) = 0 for all x, be a periodic function?
3) For 3, this set of functions do not have closure feature. So, it does not form a vector space.

Is this correct?
 

Attachments

PeroK

Science Advisor
Homework Helper
Insights Author
Gold Member
2018 Award
8,635
3,088
Technically, the zero function is periodic for any given period. In particular, it has the same value at the end points.
 

Ray Vickson

Science Advisor
Homework Helper
10,632
1,663
1. The problem statement, all variables and given/known data
1.1.3
1) Do functions that vanish at the endpoints x=0 and L=0 form a vector space?
2) How about periodic functions? obeying f(0)=f(L) ?
3) How about functions that obey f(0)=4 ?

If the functions do not qualify, list what go wrong.


2. Relevant equations
View attachment 229213

3. The attempt at a solution
1) Considering a set of functions which vanish at the end points x = {0,L}. Let's say f,g,h belong to this set of functions. Then all the properties in the above image are verified. So, this set of functions form a vector space.
2) Similarly, for 2 also all properties get verified except existence of a null vector. Can a function h(x) = 0 for all x, be a periodic function?
3) For 3, this set of functions do not have closure feature. So, it does not form a vector space.

Is this correct?
You need to have confidence in your own reasoning. (i) Have you verified all the defining properties of vector spaces in (1)-(2)? (ii) Have you shown that some vector-space property fails in (3)?
 
31,926
3,893
1. The problem statement, all variables and given/known data
1.1.3
1) Do functions that vanish at the endpoints x=0 and L=0 form a vector space?
2) How about periodic functions? obeying f(0)=f(L) ?
3) How about functions that obey f(0)=4 ?

If the functions do not qualify, list what go wrong.


2. Relevant equations
View attachment 229213

3. The attempt at a solution
1) Considering a set of functions which vanish at the end points x = {0,L}. Let's say f,g,h belong to this set of functions. Then all the properties in the above image are verified. So, this set of functions form a vector space.
2) Similarly, for 2 also all properties get verified except existence of a null vector. Can a function h(x) = 0 for all x, be a periodic function?
What's the definition of a periodic function?
Pushoam said:
3) For 3, this set of functions do not have closure feature. So, it does not form a vector space.

Is this correct?
 

fresh_42

Mentor
Insights Author
2018 Award
9,017
6,292
1) Considering a set of functions which vanish at the end points x = {0,L}. Let's say f,g,h belong to this set of functions. Then all the properties in the above image are verified. So, this set of functions form a vector space.
The notion of the corresponding equation would have been almost shorter: ##(\alpha f + \beta g)(0)=\alpha f(0)+\beta g(0)=\alpha f(L)+ \beta g(L)=(\alpha f + \beta g)(L)##
2) Similarly, for 2 also all properties get verified except existence of a null vector.
Why this? ##0(0)=0=0(L)##
Can a function h(x) = 0 for all x, be a periodic function?
This is the extreme version of a periodic function, namely with period ##0##. There is no reason to exclude it.
3) For 3, this set of functions do not have closure feature. So, it does not form a vector space.
Yes, and again ##0(0)=0\neq 4##

Is this correct?
Yes, except that I couldn't see your reasoning why the null vector in section 2 shouldn't work.

Edit: Please do the following little exercise: A set which is closed under addition and scalar multiplication automatically contains zero.
 
Last edited:
881
37
You need to have confidence in your own reasoning. (i) Have you verified all the defining properties of vector spaces in (1)-(2)? (ii) Have you shown that some vector-space property fails in (3)?
Yes, I verified it in mind. I didn't write the verification here as it was easy.
 
31,926
3,893
This is the extreme version of a periodic function, namely with period 0.
Or any period.
If f(x) = 0 for all x, then f(x) = f(x + L), for any L.

The vector space properties in the attached image in post 1 is a bit unusual. The usual definition includes statements about closure under vector addition and closure under scalar multiplication.

Minor point: The usual definitions are of the properties these operations. I've never seen them called features.
 

vela

Staff Emeritus
Science Advisor
Homework Helper
Education Advisor
14,281
1,029
This is the extreme version of a periodic function, namely with period ##0##. There is no reason to exclude it.
Typically the period is required to be positive to exclude possibilities like claiming f(x)=x is periodic since f(x)=f(x+0) for all x.
 

fresh_42

Mentor
Insights Author
2018 Award
9,017
6,292
Typically the period is required to be positive to exclude possibilities like claiming f(x)=x is periodic since f(x)=f(x+0) for all x.
Makes sense. I thought the zero might be necessary for the set of all periods, or to get vector spaces for periodic functions, but "any" sounds better than "0" although "any" includes it.
 
881
37
The notion of the corresponding equation would have been almost shorter: ##(\alpha f + \beta g)(0)=\alpha f(0)+\beta g(0)=\alpha f(L)+ \beta g(L)=(\alpha f + \beta g)(L)##


Edit: Please do the following little exercise: A set which is closed under addition and scalar multiplication automatically contains zero.
Let's say that ## \alpha ## and ## \beta ## belongs to this set and a, b belong to the scalar field. Then, the set being closed under addition and scalar multiplication means that ## a \alpha + b \beta ## must belong to the set.
Taking ## b \beta = - a \alpha ## implies that 0 belongs to the set.

Thus, a set which is closed under addition and scalar multiplication automatically contains zero.
 

The Physics Forums Way

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving
Top