Functions with operator valued arguments acting on eigenstates

qtm912
Messages
37
Reaction score
1
This question concerns the outcome when operator valued functions act on an energy eigenstate. Given an eigenstate at t =0, say |Ej > , I have seen or inferred in some of the literature that the following applies :

exp(-iHt/h) |Ej > = exp(- iEj t/h) |Ej >

Where h = h-bar
Ej is energy eigenstate j
H is the Hamiltonian

I am unclear in particular why we can say that if we apply a function with an operator as the argument to this energy eigenstate, it will return the function with the eigenvalue as the argument times the energy eigenstate. (assuming I have inferred what is in the notes correctly)

Would this then be a general result for all functions or do only certain functions satisfy this relationship. (So for example would it be true for sin(H) instead of exp(-iHt/h) )?
 
Physics news on Phys.org
Functions of operators are defined from the power series for those functions. So, because H|E>=E|E>, and H^2|E>=H(E|E>)=E(H|E>)=E^2|E>, etc., as long as these power series converge, then you will have f(H)|E>=f(E)|E>.
 
Thank you matterwave for the clear explanation
 
Matterwave said:
Functions of operators are defined from the power series for those functions. So, because H|E>=E|E>, and H^2|E>=H(E|E>)=E(H|E>)=E^2|E>, etc., as long as these power series converge, then you will have f(H)|E>=f(E)|E>.

Thus, if the operator has eigenvalues that exceed the convergence radius of the expansion, problems will arise.
 
Yes, makes sense, thanks for pointing it out torquil.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top