Fundamental electrokinetics problem calculation using Ohm's Law

  • Thread starter Thread starter annin
  • Start date Start date
  • Tags Tags
    Resistance
Click For Summary

Homework Help Overview

The discussion revolves around a problem in electrokinetics involving a circuit with a consumer resistance, internal resistance, and connecting thread resistances. Participants are tasked with calculating the voltage drop across the circuit and the terminal voltage when a power source is activated.

Discussion Character

  • Exploratory, Assumption checking, Conceptual clarification

Approaches and Questions Raised

  • Participants discuss using Ohm's Law to find current flow and total resistance but express uncertainty about subsequent steps. Questions arise regarding the interpretation of "connecting threads" and their role in the circuit. There is also a request for clarification on the problem setup and whether a diagram is available.

Discussion Status

The discussion is ongoing, with participants seeking guidance on how to proceed after establishing initial equations. Some have provided insights into the components of the circuit, while others are clarifying terms and asking for further information to better understand the problem.

Contextual Notes

Participants note the need for a diagram to visualize the circuit and clarify the roles of various components, including the internal resistance of the battery and the connecting threads. There is an emphasis on understanding the definitions and relationships within the problem setup.

annin
Messages
2
Reaction score
0
New poster has been reminded to show their work when posting schoolwork type questions
Homework Statement
Please help me to find the voltage drop of the wire, and the terminal voltage.
Relevant Equations
R=V/I (Ohm's law)
For a consumer with a resistance of 2 ohms, it has an internal resistance of 0.3 ohms and a voltage of 130 Vwe switch on the power source. The resistance of each connecting thread is 0.15 ohms. What is the voltage drop on the line and what is the terminal voltage?
 
Physics news on Phys.org
Welcome to PF!
Please show your work and tell us where you're stuck.
 
I can find the current flow with the equation I=V/Rtotal,
where Rtotal=R1+R2 and R1=2 ohm
R2=0,3 ohm

but after this I do not know how to continue. Hence I thought to use the electrical resistance of the wire for solving the problem, but I can't figure out how to use it correctly.
I would appreciate some guidance.
 
annin said:
Homework Statement: Please help me to find the voltage drop of the wire, and the terminal voltage.
Relevant Equations: R=V/I (Ohm's law)

For a consumer with a resistance of 2 ohms, it has an internal resistance of 0.3 ohms and a voltage of 130 Vwe switch on the power source. The resistance of each connecting thread is 0.15 ohms. What is the voltage drop on the line and what is the terminal voltage?
annin said:
I can find the current flow with the equation I=V/Rtotal,
where Rtotal=R1+R2 and R1=2 ohm
R2=0,3 ohm

but after this I do not know how to continue. Hence I thought to use the electrical resistance of the wire for solving the problem, but I can't figure out how to use it correctly.
I would appreciate some guidance.
Is there a diagram that goes with this problem? I'm not understanding what is being asked. (Use the "Attach files" link below the Edit window to upload a diagram of the problem.)
 
annin said:
it has an internal resistance
"It" being a battery?
annin said:
I can find the current flow with the equation I=V/Rtotal,
where Rtotal=R1+R2 and R1=2 ohm
R2=0,3 ohm
What about these "connecting threads"? What are they and where are they in the circuit?
annin said:
What is the voltage drop on the line
What line? No line was mentioned before. Is it the "threads"?
annin said:
what is the terminal voltage?
Think of the battery with internal resistance as two parts, an ideal battery (no internal resistance) with a resistor in series. The voltage across the ideal battery is 130V. Given the current in the circuit, what is the voltage drop across the internal resistance?
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
1K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
13K
  • · Replies 7 ·
Replies
7
Views
6K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
Replies
7
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K