A G. Bianconi: Gravity from Entropy

Physics news on Phys.org
antaris said:
So as I read correct the first paper describes an lorentzian spacetime and the second describes an discrete spacetime from higher order networks.

Both documents use an entropy–based variational principle in which the gravitational dynamics
(or network geometry dynamics in the discrete case) arise from a quantum relative entropy
between a default (or bare) metric and an induced metric determined by matter (and gauge)
fields. The continuum version formulates these ideas in the language of differential geometry and
field theory, while the discrete version adapts them to the combinatorial and algebraic setting
of higher–order networks. In both cases the formalism is consistent and the derived equations
(Einstein equations, Klein–Gordon and Dirac equations) are recovered in appropriate limits.

The discrete version leads to the Dirac- and Klein-Gordon-Equotation and the continuum version leads to macroscopic spacetime of the RT. Is this right?
 
Last edited:
  • Like
Likes atyy and ohwilleke
The annual big string theory conference took place last week. I thought I would make a thread about it, partly because the most prominent post about it anywhere, is probably Peter Woit dismissing it as worthless. I skimmed the live video (links here to slides, videos, and posters). What did I personally find to be of interest? Lara Anderson gave a talk about topology change in heterotic vacua, i.e. transitions between different Calabi-Yau manifolds in the extra dimensions, which turn out...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
Replies
26
Views
5K
  • · Replies 13 ·
Replies
13
Views
4K
  • · Replies 15 ·
Replies
15
Views
5K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 20 ·
Replies
20
Views
3K