A G. Bianconi: Gravity from Entropy

Physics news on Phys.org
antaris said:
So as I read correct the first paper describes an lorentzian spacetime and the second describes an discrete spacetime from higher order networks.

Both documents use an entropy–based variational principle in which the gravitational dynamics
(or network geometry dynamics in the discrete case) arise from a quantum relative entropy
between a default (or bare) metric and an induced metric determined by matter (and gauge)
fields. The continuum version formulates these ideas in the language of differential geometry and
field theory, while the discrete version adapts them to the combinatorial and algebraic setting
of higher–order networks. In both cases the formalism is consistent and the derived equations
(Einstein equations, Klein–Gordon and Dirac equations) are recovered in appropriate limits.

The discrete version leads to the Dirac- and Klein-Gordon-Equotation and the continuum version leads to macroscopic spacetime of the RT. Is this right?
 
Last edited:
  • Like
Likes atyy and ohwilleke
This is an alert about a claim regarding the standard model, that got a burst of attention in the past two weeks. The original paper came out last year: "The electroweak η_W meson" by Gia Dvali, Archil Kobakhidze, Otari Sakhelashvili (2024) The recent follow-up and other responses are "η_W-meson from topological properties of the electroweak vacuum" by Dvali et al "Hiding in Plain Sight, the electroweak η_W" by Giacomo Cacciapaglia, Francesco Sannino, Jessica Turner "Astrophysical...
Back
Top