Gamma and Weibull location parameter estimation

monicamlmc
Messages
1
Reaction score
0
Hi all,

I have a set of samples and I would like to detect the probability distribution that best represents the data. I'm using the kolmogorov-Smirnov test to verify the goodness-of-fit for some well-known distributions, like Gamma, exponential and Weibull. Since I don't know the distribution parameters, I'm estimating them (using the mechanism of rank regression on Y in most cases).

My problem is that I need to extend my set of tested distributions adding the three-parameter weibull and three-parameter gamma distributions. However, I can't find a "direct" method to estimate the location parameter for both distributions. By "direct" I mean some closed formula. I found some iterative methods, but I'm trying to avoid them because speed of detection is a very important factor in my work. Btw, I'm a Computer Science student, I have a very limited background in statistics... :-( may be what I want to do is not possible, I don't know...

Can anyone help me?

Thanks in advance!
 
Physics news on Phys.org
Matlab's Statistical toolkit has estimators for these distributions. I've used the Weibull one, can't remember if it does all three parameters. You input the raw data and it gives you parameter fits.
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...

Similar threads

Back
Top