I Gas molecular attraction in the sense of Newton's law

Click For Summary
Gas molecular attraction can be observed through astronomical phenomena, where gravity keeps gases in nebulas and stars together, such as in the case of the Sun. The behavior of gases in the atmosphere, including density gradients and buoyancy, supports the influence of gravity on gas molecules. While Newton's law adequately describes the gravitational interactions in typical stars, more complex scenarios like neutron stars require general relativity. Current technology is insufficient to measure the gravitational force between individual gas molecules directly. Overall, these observations illustrate the role of gravity in the behavior and structure of gaseous bodies.
Bernadette
Messages
29
Reaction score
0
TL;DR
Attraction between gas
Hello

What experiment or observation shows that for atoms, molecules or masses of gas, there is attraction in the sense of Newton's law (universal attraction)?

Bernadette
 
Physics news on Phys.org
Astronomical observations would indicate that the gases in nebulas stay together by gravity. Similarly for the sun composed largely of hydrogen atoms.
 
The atmosphere exhibits all the predicted phenomena of gas under the influence of gravity. Density gradient, buoyancy of less dense gases and pockets of warmer air, the escape of hydrogen and helium from the atmosphere but not heavier gases, and more.

For evidence that gases generate gravity themselves and react to this gravity, astronomical phenomena are perfect examples, as jedishrfu pointed out.
 
Another example is the theory of stars, which are held together by gravity and hindered to collapse by pressure. For usual stars like our Sun Newtonian theory is sufficient. For, e.g., neutron stars you need general relativity (Tolman-Oppenheimer-Volkoff equation).
 
The gravitational force between two molecules is too small to measure using existing technology.
 
Thread 'Why higher speeds need more power if backward force is the same?'
Power = Force v Speed Power of my horse = 104kgx9.81m/s^2 x 0.732m/s = 1HP =746W Force/tension in rope stay the same if horse run at 0.73m/s or at 15m/s, so why then horse need to be more powerfull to pull at higher speed even if backward force at him(rope tension) stay the same? I understand that if I increase weight, it is hrader for horse to pull at higher speed because now is backward force increased, but don't understand why is harder to pull at higher speed if weight(backward force)...

Similar threads

  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 40 ·
2
Replies
40
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 61 ·
3
Replies
61
Views
5K
  • · Replies 0 ·
Replies
0
Views
960
  • · Replies 15 ·
Replies
15
Views
2K