Undergrad Gas molecular attraction in the sense of Newton's law

Click For Summary
Gas molecular attraction can be observed through astronomical phenomena, where gravity keeps gases in nebulas and stars together, such as in the case of the Sun. The behavior of gases in the atmosphere, including density gradients and buoyancy, supports the influence of gravity on gas molecules. While Newton's law adequately describes the gravitational interactions in typical stars, more complex scenarios like neutron stars require general relativity. Current technology is insufficient to measure the gravitational force between individual gas molecules directly. Overall, these observations illustrate the role of gravity in the behavior and structure of gaseous bodies.
Bernadette
Messages
29
Reaction score
0
TL;DR
Attraction between gas
Hello

What experiment or observation shows that for atoms, molecules or masses of gas, there is attraction in the sense of Newton's law (universal attraction)?

Bernadette
 
Physics news on Phys.org
Astronomical observations would indicate that the gases in nebulas stay together by gravity. Similarly for the sun composed largely of hydrogen atoms.
 
The atmosphere exhibits all the predicted phenomena of gas under the influence of gravity. Density gradient, buoyancy of less dense gases and pockets of warmer air, the escape of hydrogen and helium from the atmosphere but not heavier gases, and more.

For evidence that gases generate gravity themselves and react to this gravity, astronomical phenomena are perfect examples, as jedishrfu pointed out.
 
Another example is the theory of stars, which are held together by gravity and hindered to collapse by pressure. For usual stars like our Sun Newtonian theory is sufficient. For, e.g., neutron stars you need general relativity (Tolman-Oppenheimer-Volkoff equation).
 
The gravitational force between two molecules is too small to measure using existing technology.
 
Topic about reference frames, center of rotation, postion of origin etc Comoving ref. frame is frame that is attached to moving object, does that mean, in that frame translation and rotation of object is zero, because origin and axes(x,y,z) are fixed to object? Is it same if you place origin of frame at object center of mass or at object tail? What type of comoving frame exist? What is lab frame? If we talk about center of rotation do we always need to specified from what frame we observe?

Similar threads

  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 61 ·
3
Replies
61
Views
5K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K