Gauss's Law - Cube with point charge at centre

  • Thread starter roman15
  • Start date
  • #1
roman15
70
0

Homework Statement


a)A charge Q=10nC is placed at the origin, which is the centre of a cube with side lengths a=1cm whose faces are perpendicular to the x,y and z axis. What is the total flux through the box and what is the average of the perpendicular component of the electric field on the right hand face centred on (0, a/2, 0)?

b)Now a second charge, -Q, is placed at (0,a,0). Now what is the total flux and the average fo the perpendicular component of the electric field at (0,a/2,0)?


Homework Equations


flux=Q/eo
so i was able to calculate the flux easily, but i dont understand what is meant by the average perpendicular component of the electric field
the only thing i can think of it that EA=Q/eo, so i just solve for E? is that right

for the second part, wouldnt the total flux still be the same, because the second charge isnt enclosed in the cube


The Attempt at a Solution

 

Answers and Replies

  • #2
tiny-tim
Science Advisor
Homework Helper
25,836
255
hi roman15! :smile:

(have an epsilon: ε :wink:)
flux=Q/eo
so i was able to calculate the flux easily, but i dont understand what is meant by the average perpendicular component of the electric field
the only thing i can think of it that EA=Q/eo, so i just solve for E? is that right

i think they just mean the flux though that face, divided by the area :wink:
for the second part, wouldnt the total flux still be the same, because the second charge isnt enclosed in the cube

yup! :biggrin:
 
  • #3
roman15
70
0
oh so then it would be 1/6 of the flux divided by the area of that face!
oh and then wouldnt the average perpendicular component for part b also be the same? because the flux and area are the same
 
  • #4
tiny-tim
Science Advisor
Homework Helper
25,836
255
yes! :smile:

and yes, the extra would be the same :wink:
 
  • #5
The_Duck
1,006
107
oh and then wouldnt the average perpendicular component for part b also be the same? because the flux and area are the same

No. In part a equal flux passes through each face of the cube, but not in part b! So you can't just take the total flux through the cube and divide by 6 to get the flux through the specified face. You should figure out the flux through that face due to the first charge, and the flux due to the second charge, and sum them up to get the total flux through that face (then divide by the area of the face to get the average perpendicular electric field across the face [you do this because the electric flux per unit area through a surface is defined as the component of the electric field perpendicular to the surface]).
 
  • #6
roman15
70
0
oh ok
but the second charge is equal but opposite to the first charge, so wouldnt the flux from the second charge cancel out with the flux from the first charge, so then the perpendicular electric field would be zero
 
  • #7
tiny-tim
Science Advisor
Homework Helper
25,836
255
yes … if i'm reading the question right, the charges are equal and opposite, and the displacements are equal and opposite (ie it's a mirror! :wink:), so the fluxes are the same :smile:
 
  • #8
roman15
70
0
but then that doesnt make sense that the field between two opposite charges would be zero
 
  • #9
tiny-tim
Science Advisor
Homework Helper
25,836
255
oops!

but then that doesnt make sense that the field between two opposite charges would be zero

oops! I got confused :confused:

i don't know why i used "displacement", it's irrelevant :redface:

i should have said: "the charges are equal and opposite, and the distances are equal (ie it's a mirror! :wink:), so the fluxes are the equal and opposite :smile:"

sorry! :redface:
 
  • #10
roman15
70
0
its alright lol, but im still confused, because if the total flux is zero then that means there is no electric field between the charges, but there has to be...
 
  • #11
The_Duck
1,006
107
The total flux through the face isn't zero. Draw the setup and you will see that the fluxes from the two charges are in the same direction through the face, and so add together (instead of cancelling each other).
 
  • #12
roman15
70
0
oh because one is positive and one is negative, the field lines are pointing in the same direction
so would the total flux=2Q/eo?
and then the electric field would be that divided by the area?
 
  • #13
The_Duck
1,006
107
Q/e0 tells you the flux through a closed surface in terms of the total charge enclosed by that surface. But here we want the flux through a square, which isn't a closed surface.

However, you can make the argument tiny-tim is talking about: since the charges have equal magnitudes, and are placed symmetrically at equal distances from the face, the flux through the face from each charge is equal. And you already calculated the flux through that face from one of the charges.
 
  • #14
tiny-tim
Science Advisor
Homework Helper
25,836
255
roman15 said:
oh because one is positive and one is negative, the field lines are pointing in the same direction
so would the total flux=2Q/eo?
and then the electric field would be that divided by the area?

yes the fluxes are opposite, but they're going through the surface in opposite directions, so they add :smile:
 
  • #15
roman15
70
0
ok thank you guys so much!! I really appreciate it
 

Suggested for: Gauss's Law - Cube with point charge at centre

  • Last Post
Replies
1
Views
3K
Replies
3
Views
10K
  • Last Post
Replies
6
Views
2K
  • Last Post
Replies
2
Views
1K
  • Last Post
Replies
0
Views
3K
  • Last Post
Replies
5
Views
21K
  • Last Post
Replies
3
Views
1K
  • Last Post
Replies
6
Views
10K
Replies
6
Views
2K
Replies
5
Views
4K
Top