- #1

- 35,534

- 13,847

$$ \mathbf{B} = -\frac{\omega^2 \mu_0 p_0 }{4\pi c} \sin\theta \frac{e^{i\omega (r/c-t)}}{r} \mathbf{\hat{\phi} } $$

$$ \mathbf{E} = c \mathbf{B} \times \hat{\mathbf{r}}

= -\frac{\omega^2 \mu_0 p_0 }{4\pi} \sin\theta \frac{e^{i\omega (r/c-t)}}{r} \hat{\theta} $$

I would like something similar, but where I could use say a square pulse, or a Gaussian pulse, or some other non-oscillating waveform.