General relativity - Using Ricc and Weyl tensor to find the area

AI Thread Summary
The discussion revolves around solving a problem in general relativity using a specific metric. The user has successfully completed part (a), which involves calculating the second derivative of the area of a circle using the Ricci tensor. For part (b), they seek assistance in determining the second derivative of the ratio of the diagonals, expressed in terms of the Weyl tensor. The user considers employing the geodesic deviation equation but is uncertain about its application in this context. The thread highlights the complexities of relating geometric properties to curvature tensors in general relativity.
edoofir
Messages
6
Reaction score
1
Homework Statement
General relaivity, Geodesic equation
Relevant Equations
General relativity equations
I have the following question to solve:Use the metric:$$ds^2 = -dt^2 +dx^2 +2a^2(t)dxdy + dy^2 +dz^2$$

Test bodies are arranged in a circle on the metric at rest at ##t=0##.
The circle define as $$x^2 +y^2 \leq R^2$$

The bodies start to move on geodesic when we have $$a(0)=0$$

a. we have to calculate the second derivative of the area of the circle $$S = \int{\sqrt{g^(2)}dxdy}$$ respected to time and express your answer using the Ricci tensor.

b. calculate the second derivative respected to time of the ratio of the diagonals $$D_1, D_2$$ and express it using Weyl tensor.

1680466875788-png.png


I have already solved section a and now I would like to get some help/ideas how can I solve section b. I had an idea using the geodesic deviation equation but I am not sure how can I use it in here.

Thanks for the ones who will try to help me :)
 
Last edited by a moderator:
Physics news on Phys.org
I observe for ##D_1##
dl^2=2(1+a^2)dx^2
and for ##D_2##
dl^2=2(1-a^2)dx^2
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Thread 'Stacked blocks & pulley system'
I've posted my attempt at a solution but I haven't gone through the whole process of putting together equations 1 -4 yet as I wanted to clarify if I'm on the right path My doubt lies in the formulation of equation 4 - the force equation for the stacked block. Since we don't know the acceleration of the masses and we don't know if mass M is heavy enough to cause m2 to slide, do we leave F_{12x} undetermined and not equate this to \mu_{s} F_{N} ? Are all the equations considering all...
Back
Top