General relativity - Using Ricc and Weyl tensor to find the area

edoofir
Messages
6
Reaction score
1
Homework Statement
General relaivity, Geodesic equation
Relevant Equations
General relativity equations
I have the following question to solve:Use the metric:$$ds^2 = -dt^2 +dx^2 +2a^2(t)dxdy + dy^2 +dz^2$$

Test bodies are arranged in a circle on the metric at rest at ##t=0##.
The circle define as $$x^2 +y^2 \leq R^2$$

The bodies start to move on geodesic when we have $$a(0)=0$$

a. we have to calculate the second derivative of the area of the circle $$S = \int{\sqrt{g^(2)}dxdy}$$ respected to time and express your answer using the Ricci tensor.

b. calculate the second derivative respected to time of the ratio of the diagonals $$D_1, D_2$$ and express it using Weyl tensor.

1680466875788-png.png


I have already solved section a and now I would like to get some help/ideas how can I solve section b. I had an idea using the geodesic deviation equation but I am not sure how can I use it in here.

Thanks for the ones who will try to help me :)
 
Last edited by a moderator:
Physics news on Phys.org
I observe for ##D_1##
dl^2=2(1+a^2)dx^2
and for ##D_2##
dl^2=2(1-a^2)dx^2
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top