General relativity - Using Ricc and Weyl tensor to find the area

Click For Summary
The discussion revolves around solving a problem in general relativity using a specific metric. The user has successfully completed part (a), which involves calculating the second derivative of the area of a circle using the Ricci tensor. For part (b), they seek assistance in determining the second derivative of the ratio of the diagonals, expressed in terms of the Weyl tensor. The user considers employing the geodesic deviation equation but is uncertain about its application in this context. The thread highlights the complexities of relating geometric properties to curvature tensors in general relativity.
edoofir
Messages
6
Reaction score
1
Homework Statement
General relaivity, Geodesic equation
Relevant Equations
General relativity equations
I have the following question to solve:Use the metric:$$ds^2 = -dt^2 +dx^2 +2a^2(t)dxdy + dy^2 +dz^2$$

Test bodies are arranged in a circle on the metric at rest at ##t=0##.
The circle define as $$x^2 +y^2 \leq R^2$$

The bodies start to move on geodesic when we have $$a(0)=0$$

a. we have to calculate the second derivative of the area of the circle $$S = \int{\sqrt{g^(2)}dxdy}$$ respected to time and express your answer using the Ricci tensor.

b. calculate the second derivative respected to time of the ratio of the diagonals $$D_1, D_2$$ and express it using Weyl tensor.

1680466875788-png.png


I have already solved section a and now I would like to get some help/ideas how can I solve section b. I had an idea using the geodesic deviation equation but I am not sure how can I use it in here.

Thanks for the ones who will try to help me :)
 
Last edited by a moderator:
Physics news on Phys.org
I observe for ##D_1##
dl^2=2(1+a^2)dx^2
and for ##D_2##
dl^2=2(1-a^2)dx^2
 
At first, I derived that: $$\nabla \frac 1{\mu}=-\frac 1{{\mu}^3}\left((1-\beta^2)+\frac{\dot{\vec\beta}\cdot\vec R}c\right)\vec R$$ (dot means differentiation with respect to ##t'##). I assume this result is true because it gives valid result for magnetic field. To find electric field one should also derive partial derivative of ##\vec A## with respect to ##t##. I've used chain rule, substituted ##\vec A## and used derivative of product formula. $$\frac {\partial \vec A}{\partial t}=\frac...