Generic Soliton Solution Periodicity: Restrictions & Examples

Einj
Messages
464
Reaction score
59
Hello everyone, I have a question regarding the possible periodicity of time in a generic metric.
Suppose that for some reason I have a solution to Einstein's equations of the kind (in Euclidean time):

$$
ds^2_E=+f(r)dt_E^2+\frac{dr^2}{g(r)}+r^2(dx^2+dy^2).
$$

Am I always allowed to assign some periodicity to the Eucledean time ##t_E## or is there any restriction?

For example, I know that there is a particular solution called "thermal AdS" which is nothing but the usual AdS metric (i.e. not a black hole with an horizon) to which a periodic time has been assigned.

When can I do that?

Thanks!
 
Physics news on Phys.org
A periodic euclidean time is equivalent to gluing the two ends of the path integral that prepares your state. This is then equivalent to preparing a thermal state. So periodic Euclidean time is always going to prepare a thermal state via the path integral. Whether or not it is a black hole depends on the actual path integral.

Note when I say path integral I mean that of the boundary CFT. So yes AdS and thermal AdS are the same as far as space-time geometry is concerned but in the latter the CFT is prepared in a thermal state. Black holes in the bulk are also dual to thermal CFTs (at least in most examples e.g. BTZ).

EDIT: I forgot to mention that the path integrals for thermal AdS and BTZ are closely related. In the former the path integral is a torus with one circle parametrized by Euclidean time and the other by the angular coordinate; the latter can be obtained simply by switching the roles of these two coordinates on the torus.
 
Last edited:
Thanks a lot for your reply! I guess my question was: since periodic Eucledean time always means thermal state for the boundary CFT, does this mean that if I have a generic soliton solution (no horizon) and I impose the time to be periodic this is going to be a thermal state? Do I have any constrain on the solution in order to be allowed to impose periodic time conditions?

Thanks a gain!
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top