unscientific
- 1,728
- 13
Taken from my lecturer's notes on GR:
I'm trying to understand what goes on from 2nd to 3rd line:
N^\beta \nabla_\beta (T^\mu \nabla_\mu T^\alpha) - N^\beta \nabla_\beta T^\mu \nabla_\mu T^\alpha = -T^\beta \nabla_\beta N^\mu \nabla_\mu T^\alpha
Using commutator relation ## T^v \nabla_v N^\alpha = N^v\nabla_v T^\alpha ## we swap the 'N' for the 'T' in the last term of the second line:
N^\beta \nabla_\beta (T^\mu \nabla_\mu T^\alpha) - T^\beta \nabla_\beta N^\mu \nabla_\mu T^\alpha = -T^\beta \nabla_\beta N^\mu \nabla_\mu T^\alpha
N^\beta \nabla_\beta \left(\frac{D T^\alpha}{D\lambda}\right) - T^\beta \nabla_\beta N^\mu \nabla_\mu T^\alpha = -T^\beta \nabla_\beta N^\mu \nabla_\mu T^\alphaThis means that ## \nabla_\beta \left(\frac{D T^\alpha}{D\lambda}\right) = 0 ##. Why is this so?
I'm trying to understand what goes on from 2nd to 3rd line:
N^\beta \nabla_\beta (T^\mu \nabla_\mu T^\alpha) - N^\beta \nabla_\beta T^\mu \nabla_\mu T^\alpha = -T^\beta \nabla_\beta N^\mu \nabla_\mu T^\alpha
Using commutator relation ## T^v \nabla_v N^\alpha = N^v\nabla_v T^\alpha ## we swap the 'N' for the 'T' in the last term of the second line:
N^\beta \nabla_\beta (T^\mu \nabla_\mu T^\alpha) - T^\beta \nabla_\beta N^\mu \nabla_\mu T^\alpha = -T^\beta \nabla_\beta N^\mu \nabla_\mu T^\alpha
N^\beta \nabla_\beta \left(\frac{D T^\alpha}{D\lambda}\right) - T^\beta \nabla_\beta N^\mu \nabla_\mu T^\alpha = -T^\beta \nabla_\beta N^\mu \nabla_\mu T^\alphaThis means that ## \nabla_\beta \left(\frac{D T^\alpha}{D\lambda}\right) = 0 ##. Why is this so?