MHB Geometric action of an arbitrary orthogonal 3x3 matrix with determinant -1

kalish1
Messages
79
Reaction score
0
Hi,
I have a question about describing geometrically the action of an arbitrary orthogonal 3x3 matrix with determinant -1. I would like to know if my proposed solutions are satisfactory, or if they lack justification. I have two alternate solutions, but have little confidence in their validity. Any help would be greatly appreciated!

Solution 1: The orthogonal 3 x 3 matrix with determinant −1 is an improper rotation, meaning it is a reflection combined with a proper rotation. In another sense, an improper rotation is an indirect isometry, which is an affine transformation with an orthogonal matrix with a determinant −1.

Solution 2: A rotation about the origin, followed by inversion through the origin (i.e. (x,y,z)-->(-x,-y,-z) ). Note that a "left-handed object" turns into a "right handed object", so "handedness is reversed" but otherwise it is just like a rotation.

Thanks in advance!
 
Physics news on Phys.org
Your "solution 1" does not say "rotation about the origin" so "solution 2" is better. Other than that, they both say the same thing.
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top