Geometric interpretation of the spacetime invariant

fuzzytoad
Messages
3
Reaction score
0
For a euclidean space, the interval between 2 events (one at the origin) is defined by the equation:
L^2=x^2 + y^2
The graph of this equation is a circle for which all points on the circle are separated by the distance L from the origin.

For space-time, the interval between 2 events is defined by the equation
S^2 = r^2 - (ct)^2
The graph of this equation is a hyperbola. In this case, what would S represent geometrically given that all events on the hyperbola share the same space-time invariant?
 
Physics news on Phys.org
fuzzytoad said:
For a euclidean space, the interval between 2 events (one at the origin) is defined by the equation:
L^2=x^2 + y^2
The graph of this equation is a circle for which all points on the circle are separated by the distance L from the origin.

For space-time, the interval between 2 events is defined by the equation
S^2 = r^2 - (ct)^2
The graph of this equation is a hyperbola. In this case, what would S represent geometrically given that all events on the hyperbola share the same space-time invariant?

Am I missing something? You seem to have answered your own question.

Seen as an active transformation, any (orthochronous) Lorentz transformation moves a point on the hyperboloid to another point on the same branch of the hyperboloid (a non-orthochronous LT would move the point to the other branch of the hyperboloid). Similarly, seen as an active transformation, any rotation on Euclidean space moves a point on a sphere to another point on the sphere.
 
Are you asking for a geometrical interpretation, or a physical one? Physically, if s2 is less than zero, the interpretation is that \sqrt{-s^2} is the time interval on a clock that moved uniformly from the origin to the event (t,r).
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top