Geometric Optics: Speed of light and Reflection in a glass cube

Click For Summary
A light beam striking a glass cube with a metal reflector and water will not enter the water if the angle exceeds 58.7 degrees due to total internal reflection. The refractive index of the glass is crucial for calculating the speed of light within it. Initially, an incorrect refractive index of 1.52 was assumed, but a recalculation using the critical angle led to a more accurate index of 1.5565. This was derived from the relationship between the angles and refractive indices at the glass-water boundary. The final speed of light in the glass was determined to be approximately 1.927 x 10^8 m/s.
NickP89
Messages
18
Reaction score
0

Homework Statement


A large cube of glass has a metal reflector on one face and water on an adjoining face (the figure). A light beam strikes the reflector, as shown. You observe that as you gradually increase the angle of the light beam, if Theta is greater than 58.7 no light enters the water.

What is the speed of light in this glass?

Figure:
http://session.masteringphysics.com/problemAsset/1055385/3/YF-33-54.jpg

Homework Equations



n=c/v

n=1.52 for glass

The Attempt at a Solution



I'm not really sure which way to approach this problem. I initially thought of using n=c/v

1.52=3*10^8/v
v=1.97*10^8 m/s.

This answer is wrong, and I can't see what I'm doing wrong. Any advice would be appreciated.
 
Physics news on Phys.org
Different types of glass have different refractive indexes, apparently for this cube it is not 1.52.

Instead, have a look at the discussion of Total Internal Reflection in your textbook or class notes -- hopefully that should clear things up.
 
Hey,

See
Initially Always try solving the problem with values you have been provided with.

In case you feel they are not enough, create new values in terms of variable, like let's take refractive index of water/glass as u.This way in the end if some one told you that it wasn't glass and water and rather glass and oil you will not have to go through the pain of solving again. you could plug in the values in your final expression :-)


Also logic dictates that if we knew about the absolute refractive index of glass, we could calculate the speed directly using v=c/u(glass wrt vacuum).

The question is infact asking you to find the u(glass wrt vacuum) so that you can find speed in the next step.

So moving on,

What is the relationship between theta and angle of incidence on water.

what will the refracted angle be in terms of u and theta.

What happens when angle theta on glass reaches 58.7 degrees?
 
Last edited:
the light must be totally internall reflected at the glass/water boundary which enables you to calculate n for glass to water. If you take n for air to water to be 1.33 then you can find n for air to glass and therefore the speed in glass.
Were you given n for air to water? or are you expected to look it up or know it?
For this set up I got n for air to glass to be 1.55
 
I think I understand: sin(ThetaCritical)=n2/n1

sin(58.7)=1.33/n1

n1=1.5565

Then:

n1=c/v

1.5565=3*10^8/v

v=1.927*10^8 m/s

Thank you for directing me to Total internal reflection, does the rest look correct?
 
Yes, you have got all your formula's right :-)
 
Thread 'Correct statement about size of wire to produce larger extension'
The answer is (B) but I don't really understand why. Based on formula of Young Modulus: $$x=\frac{FL}{AE}$$ The second wire made of the same material so it means they have same Young Modulus. Larger extension means larger value of ##x## so to get larger value of ##x## we can increase ##F## and ##L## and decrease ##A## I am not sure whether there is change in ##F## for first and second wire so I will just assume ##F## does not change. It leaves (B) and (C) as possible options so why is (C)...

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
4
Views
3K
Replies
10
Views
5K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K