sandy.bridge
- 797
- 1
Homework Statement
Find the global maximum and global minimum of
f(x, y)=x^3+y^2
in the half disk x^2+y^2\leq{1}, y\geq{0}
This is a rather new topic for me, so I am looking for clarification for problems such as these.
The Attempt at a Solution
First, I determined the critical points of the function.
\nabla{f(x, y)=3x^2i+2yj} and thus has a critical point at
(x, y)=(0, 0)
Next, we will consider along the boundary of the half disk. Since the disk is a half circle, I must include the endpoints x=1, x=-1.
We have,
x=cost, y=sint, (0, \pi{)}
We have,
f(cost, sint)=cos^3t+sin^2t=g(t)
Moreover,
-3cos^2tsint+2sintcost=0\rightarrow{cost=2/3}
g(cos^{-1}2/3)=0.852
Next, checking the boundaries at t=0 and t=π
g(0)=1, g(π)=-1
Therefore, f has a global max at the boundary on the half disk of 1 at (1, 0) and a global min of -1 at (-1, 0).
However, I executed two of the tests for determining if critical points are max/mins for the point (0. 0) however all the tests were inconclusive. What else can be done here?