Gradient in general co-ordinate system

sebb1e
Messages
34
Reaction score
0
I know that for a general co-ordinate system, the gradient can be expressed as it is at the bottom of this page:

http://en.wikipedia.org/wiki/Orthogonal_coordinates#Differential_operators_in_three_dimensions

However, the book I am working from (A First Course in Continuum Mechanics by Gonzalez and Stuart) defines it as:

"Let {ei} be an arbitrary frame. Then grad phi(x)= (partial d phi by d xi)(x) ei where (x1,x2,x3) are the coordinates of x in ei"

I don't understand how this relates to the actual definition, for example given the definition in my book, how do I show that the gradient in cylindricals contains a 1/r in front of the unit theta term?

I presume that these ei are completely general so they are not unit vectors?

I need to understand this notation properly so I can apply it to deformation gradients etc
 
Last edited:
Physics news on Phys.org
Yes, non Cartesian coordinates are not necessarily unit vectors, especially if one denotes the distance to the origin. The trick is to consider them as the Graßmann product of differential forms: ##dx\wedge dy \wedge dz##. From there you can substitute ##x,y,z## and recalculate the product.
 

Similar threads

Back
Top