Schools Graduate School Mathematics Preperation

AI Thread Summary
The discussion centers on enhancing mathematical skills for pursuing graduate studies in theoretical physics, particularly in cosmology, quantum mechanics, or particle physics. The original poster expresses concern about their weak mathematics background due to a general physics program. In response, participants recommend various mathematical resources tailored to different educational levels. For beginning to mid-undergraduate students, Mary Boas' book is suggested for covering essential topics beyond calculus. For advanced undergraduates or beginning graduate students, Hassani's "Mathematical Physics: A Modern Introduction to its Foundations" and Stone and Goldbart's "Mathematics for Physics: A Guided Tour for Graduate Students" are recommended for their thorough treatment of relevant mathematical concepts. For those at the advanced graduate or research level, Nakahara's "Geometry, Topology and Physics" is noted for its coverage of complex topics like differential geometry and algebraic topology. The consensus emphasizes focusing on foundational topics before progressing to more advanced material, ensuring a solid mathematical base for theoretical physics studies.
JordanGo
Messages
72
Reaction score
0
Here is my situation:
I am currently finishing my undergraduate physics program and thinking of doing graduate studies. My only concern is that the knowledge of mathematics is fairly weak. My program offers little mathematics, its very general physica. I am interested in doing theoretical physics in the domain of cosmology, quantum mechanics or particle physics (something to that effect). As I am aware, these subjects are heavily based on mathematics.
Here is my question:
I have a good long break coming up and was hoping to get some studying done. Can someone give me a list of mathematical topics/applications I may want to study to enhance my skills in the mathematical side of physics?
 
Physics news on Phys.org
It depends on what you've already studied. I'll give you reference(s) that covers the material at each level and then you can look at each and fill up the gaps in your knowledge according to that:

Beginning-mid undergrad level:

I would say after the first two or three years of undergrad, most people should be familiar with the topics found in Mary Boas' book:

https://www.amazon.com/dp/0471198269/?tag=pfamazon01-20

I haven't read the book myself but it seems like a decent book that covers material beyond calculus.

Advanced undergrad/beginning grad:

Two excellent references are Hassani's "Mathematical Physics: A Modern Introduction to its Foundations" and Stone and Goldbart's "Mathematics for Physics: A guided tour for graduate students".

https://www.amazon.com/dp/0387985794/?tag=pfamazon01-20
https://www.amazon.com/dp/0521854032/?tag=pfamazon01-20

The first one has a pretty good exposition of each topic and is mathematically precise. It states, defines and sometimes proves things clearly. The latter is a somewhat more "down-and-dirty" approach. It can be a bit mathematically sloppy at times but the challenging problems in every chapter (only 10-15 of them, so quality over quantity) make up for it.

Advanced grad/research level:

Nakahara's "Geometry, Topology and Physics". Haven't read a lot of this, but it looks like a good overview of differential geometry, algebraic topology, complex manifolds etc.
 
Last edited by a moderator:
These are great suggestions! Exactly what I was looking for. Thanks so much for your awesome replies!
 
JordanGo said:
These are great suggestions! Exactly what I was looking for. Thanks so much for your awesome replies!

The book Hercuflea posted is geared towards people who want to graduate school in math, so I wouldn't necessarily start with that. Of course, it's all stuff you're going to have to learn at some point or the other if you want to do theory, but right now you should be learning the topics found in the books I posted.
 
guys i am currently studying in computer science engineering [1st yr]. i was intrested in physics when i was in high school. due to some circumstances i chose computer science engineering degree. so i want to incoporate computer science engineering with physics and i came across computational physics. i am intrested studying it but i dont know where to start. can you guys reccomend me some yt channels or some free courses or some other way to learn the computational physics.
I'm going to make this one quick since I have little time. Background: Throughout my life I have always done good in Math. I almost always received 90%+, and received easily upwards of 95% when I took normal-level HS Math courses. When I took Grade 9 "De-Streamed" Math (All students must take "De-Streamed" in Canada), I initially had 98% until I got very sick and my mark had dropped to 95%. The Physics teachers and Math teachers talked about me as if I were some sort of genius. Then, an...
Bit Britain-specific but I was wondering, what's the best path to take for A-Levels out of the following (I know Y10 seems a bit early to be thinking about A-levels, but my choice will impact what I do this year/ in y11) I (almost) definitely want to do physics at University - so keep that in mind... The subjects that I'm almost definitely going to take are Maths, Further Maths and Physics, and I'm taking a fast track programme which means that I'll be taking AS computer science at the end...

Similar threads

Replies
2
Views
2K
Replies
20
Views
2K
Replies
7
Views
2K
Replies
4
Views
4K
Back
Top