MHB Graph Theory. Decomposition of K_{2n+1} into hamiltonian cycles.

Click For Summary
The discussion centers on proving the existence of n edge-disjoint Hamiltonian cycles in the complete graph K_{2n+1} using a non-constructive approach. It is suggested that this can be framed in terms of permutations within S_{2n+1}, requiring n permutations where consecutive elements in one permutation do not appear consecutively in others. An example from S_5 illustrates this concept with specific permutations. Additionally, the theorem is linked to the decomposition of K_{2n} into n Hamiltonian paths, and a reference to a related question on MathOverflow suggests a potential group-theoretical proof. The conversation highlights the complexity and interconnectedness of graph theory concepts.
caffeinemachine
Gold Member
MHB
Messages
799
Reaction score
15
Theorem: Prove that there exist $n$ edge disjoint Hamiltonian cycles in the complete graph $K_{2n+1}$.
----------------------------------------------------------------------------------
I have found two constructive proofs of this over the internet. But I would like to prove it non-constructively.

This question can be easily framed in terms of permutations. One has to prove that in $S_{2n+1}$ there exist $n$ permutations $\sigma_1, \ldots, \sigma_n$ such that the cycle decomposition of each contains exactly one cycles and that if two elements of $\{ 1,2,\ldots , 2n+1 \}$ appear consecutively in the cycle decomposition of $\sigma_i$ then then they don't appear consecutively in the cycle decomposition of $\sigma_j \, \forall j \neq i$.

For example, consider $S_5$. Then $\sigma_1 = (1 \, 2 \, 3 \, 4 \, 5)$ and $\sigma_2 = (1 \, 3 \, 5 \, 2 \, 4)$ fill the bill.

The theorem is also equivalent to the following:
$K_{2n}$ can be decomposed into $n$ Hamiltonian paths.
 
Physics news on Phys.org
caffeinemachine said:
Theorem: Prove that there exist $n$ edge disjoint Hamiltonian cycles in the complete graph $K_{2n+1}$.
----------------------------------------------------------------------------------
I have found two constructive proofs of this over the internet. But I would like to prove it non-constructively.

This question can be easily framed in terms of permutations. One has to prove that in $S_{2n+1}$ there exist $n$ permutations $\sigma_1, \ldots, \sigma_n$ such that the cycle decomposition of each contains exactly one cycles and that if two elements of $\{ 1,2,\ldots , 2n+1 \}$ appear consecutively in the cycle decomposition of $\sigma_i$ then then they don't appear consecutively in the cycle decomposition of $\sigma_j \, \forall j \neq i$.

For example, consider $S_5$. Then $\sigma_1 = (1 \, 2 \, 3 \, 4 \, 5)$ and $\sigma_2 = (1 \, 3 \, 5 \, 2 \, 4)$ fill the bill.

The theorem is also equivalent to the following:
$K_{2n}$ can be decomposed into $n$ Hamiltonian paths.

If $2n+1$ is a prime then there is a trivial construction.
The cycles $(1, \, 1+i, \, 1+2i, \, \ldots , \, 1+2ni), i \in \{1,2, \ldots , n \}$ do the job.
 
caffeinemachine said:
Theorem: Prove that there exist $n$ edge disjoint Hamiltonian cycles in the complete graph $K_{2n+1}$.
----------------------------------------------------------------------------------
I have found two constructive proofs of this over the internet. But I would like to prove it non-constructively.

This question can be easily framed in terms of permutations. One has to prove that in $S_{2n+1}$ there exist $n$ permutations $\sigma_1, \ldots, \sigma_n$ such that the cycle decomposition of each contains exactly one cycles and that if two elements of $\{ 1,2,\ldots , 2n+1 \}$ appear consecutively in the cycle decomposition of $\sigma_i$ then then they don't appear consecutively in the cycle decomposition of $\sigma_j \, \forall j \neq i$.

For example, consider $S_5$. Then $\sigma_1 = (1 \, 2 \, 3 \, 4 \, 5)$ and $\sigma_2 = (1 \, 3 \, 5 \, 2 \, 4)$ fill the bill.

The theorem is also equivalent to the following:
$K_{2n}$ can be decomposed into $n$ Hamiltonian paths.

Hi caffainmachine, :)

I don't know the answer to your question, however I found that the exact same question is asked in "mathoverflow".

Link: Hamilton Paths in $K_{2n}$ - MathOverflow

Note that in the answer given it says,

"More generally, a symmetric sequencing in a group with a single involution is sufficient to construct the decomposition."

I don't have a clear understanding about what this statement means, however just thought of quoting it here 'cause I felt that it might lead to a Group theoretical proof to your question.

Kind Regards,
Sudharaka.
 
Hello, I'm joining this forum to ask two questions which have nagged me for some time. They both are presumed obvious, yet don't make sense to me. Nobody will explain their positions, which is...uh...aka science. I also have a thread for the other question. But this one involves probability, known as the Monty Hall Problem. Please see any number of YouTube videos on this for an explanation, I'll leave it to them to explain it. I question the predicate of all those who answer this...

Similar threads

Replies
1
Views
2K
Replies
2
Views
2K
Replies
3
Views
2K
Replies
28
Views
3K
Replies
1
Views
2K
3
Replies
100
Views
11K
4
Replies
175
Views
25K