Let ##D_{j}## denote the number obtained by replacing ##d_j## by ##e_j## in ##d## for all ##1 \leq j \leq 9##. So, for example, ##D_1## will have the decimal representation ##e_1 d_2...d_9##. Similarly let ##E_{j}## denote the number obtained by replacing ##e_j## by ##f_j## in ##e## for all ##1 \leq j \leq 9##.
The numeric values of ##D_j, E_j## are given by:
##D_j = (\sum_{i=1}^9 10^{9-i}d_i) - 10^{9-j}d_j + 10^{9-j}e_j = d - 10^{9-j}d_j + 10^{9-j}e_j##
##E_j = (\sum_{i=1}^9 10^{9-i}e_i) - 10^{9-j}e_j + 10^{9-j}f_j = e - 10^{9-j}e_j + 10^{9-j}f_j##
for all ##1 \leq j \leq 9##.
Since ##D_j \equiv 0 \, \text{mod 7}##, we get ##(d - 10^{9-j}d_j + 10^{9-j}e_j)\, \text{mod 7} = 0 \Rightarrow ##
##10^{9-j}e_j \, \text{mod 7} \equiv 10^{9-j}d_j\, \text{mod 7} - d \, \text{mod 7}## (Eq. 1)
Similarly, since ##E_j## is divisible for 7 for ##j = 1, 2, ...,9##, we have ##E_j \equiv 0 \, \text{mod 7}## and therefore ##(e - 10^{9-j}e_j + 10^{9-j}f_j)\, \text{mod 7} = 0 \Rightarrow ##
##10^{9-j}f_j \, \text{mod 7} \equiv 10^{9-j}e_j\, \text{mod 7} - e \, \text{mod 7}## (Eq. 2)
Substituting based on (Eq.1) in (Eq. 2) gives:
##10^{9-j}f_j \, \text{mod 7} \equiv 10^{9-j}d_j\, \text{mod 7} - d \, \text{mod 7} - e \, \text{mod 7} \Rightarrow##
##10^{9-j}(d_j - f_j) \, \text{mod 7} \equiv d \, \text{mod 7} + e \, \text{mod 7}## (Eq. 3)
Now ##e = \sum_{i=1}^{9} 10^{9-i}e_i##. Using (Eq. 1), we get $$
e \, \text{mod 7} \equiv \sum_{i=1}^{9} (10^{9-i}d_i \, \text{mod 7} - d \, \text{mod 7}) \equiv (\sum_{i=1}^{9} (10^{9-i}d_i \, \text{mod 7}) - 9d \, \text{mod 7} \equiv -8d \, \text{mod 7}$$ (Eq. 4)
Applying (Eq. 4) in (Eq. 3) gives ##10^{9-j}(d_j - f_j) \, \text{mod 7} \equiv d \, \text{mod 7} - 8d \, \text{mod 7} \equiv -7d \, \text{mod 7} = 0 \, \text{mod 7}##. Since ##10^{9-j} \, \text{mod 7} \neq 0## for any integer valued ##j##, it follows that ##(d_j - f_j) \equiv 0 \, \text{mod 7}##, i.e. Hence proved that ##d_j - f_j## must be divisible by 7 for all allowed values of ##j##.