B Gravitational Lensing: Magnification of Galaxies

Click For Summary
The discussion on gravitational lensing highlights the complexity of magnifying galaxies, particularly those the size of the Milky Way. It emphasizes that the effectiveness of a galaxy as a lens depends on its mass and the distance of the light source, rather than just its size. Light bending around such galaxies can lead to multiple distorted images rather than a single magnified view. The conversation references Hartle's work on light deflection, noting that calculations for the Milky Way would require advanced modeling due to its irregular shape. Overall, the topic reveals that there is no straightforward answer to the magnification of galaxies.
Mikael17
Messages
43
Reaction score
5
TL;DR
How many time does a galaxy (same size as our milkyway) magnified the background ?
How many time does a galaxy (same size as our milkyway) magnified the background ?
 
Physics news on Phys.org
Um...once?

This is impossible to answer. "How strong is a glass lens"?
 
It doesn't magnify at all, because it's an absolutely terrible lens. It's not even circularly symmetric, so you usually get up to four distorted and displaced copies of whatever is in the background.
 
  • Like
Likes Vanadium 50 and vanhees71
OK, how much would light then bend , when passing nearby a milkyway size galaxy ?
 
Depends how far away the light is and it depends how massive the galaxy is more than its size. There isn't really a single answer to this question.

Why are you asking? Perhaps if you have a less general question we can be more helpful.
 
Mikael17 said:
OK, how much would light then bend , when passing nearby a milkyway size galaxy ?
In Hartle's Introduction to General Relativity, he studies the deflection of light for a spherical mass in chapter 9. The estimate is ##1.7## seconds of arc for a light ray grazing the Sun. There would be less deflection for a light ray further from the Sun. In other words, it depends on the mass of the Sun and the impact parameter.

The calculation for the Milky Way would be considerably more complex, as it is not a neat spherical mass. A good project for a computer model, perhaps.
 
Hello, everyone, hope someone will resolve my doubts. I have posted here some two years ago asking for an explanation of the Lorentz transforms derivation found in the Einstein 1905 paper. The answer I got seemed quite satisfactory. Two years after I revisit this derivation and this is what I see. In the Einstein original paper, the Lorentz transforms derivation included as a premise that light is always propagated along the direction perpendicular to the line of motion when viewed from the...