B Gravitational Lensing: Magnification of Galaxies

Mikael17
Messages
43
Reaction score
5
TL;DR Summary
How many time does a galaxy (same size as our milkyway) magnified the background ?
How many time does a galaxy (same size as our milkyway) magnified the background ?
 
Physics news on Phys.org
Um...once?

This is impossible to answer. "How strong is a glass lens"?
 
It doesn't magnify at all, because it's an absolutely terrible lens. It's not even circularly symmetric, so you usually get up to four distorted and displaced copies of whatever is in the background.
 
  • Like
Likes Vanadium 50 and vanhees71
OK, how much would light then bend , when passing nearby a milkyway size galaxy ?
 
Depends how far away the light is and it depends how massive the galaxy is more than its size. There isn't really a single answer to this question.

Why are you asking? Perhaps if you have a less general question we can be more helpful.
 
Mikael17 said:
OK, how much would light then bend , when passing nearby a milkyway size galaxy ?
In Hartle's Introduction to General Relativity, he studies the deflection of light for a spherical mass in chapter 9. The estimate is ##1.7## seconds of arc for a light ray grazing the Sun. There would be less deflection for a light ray further from the Sun. In other words, it depends on the mass of the Sun and the impact parameter.

The calculation for the Milky Way would be considerably more complex, as it is not a neat spherical mass. A good project for a computer model, perhaps.
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
Back
Top