Undergrad Gravitational lensing of gravitational waves - real?

Click For Summary
Gravitational lensing of gravitational waves is a plausible phenomenon, particularly during events like supermassive black hole mergers lensed by nearby black holes. The strength of these waves could potentially allow for detection, but significant challenges remain due to the need for precise directional accuracy in measurements. Unlike optical wavelengths, gravitational waves have longer wavelengths and lower resolution due to the small aperture of detectors, resulting in a signal-to-noise ratio that limits clarity. The influence of gravitational lensing on physical entities is expected, but the effects on solid matter remain speculative. Overall, while the concept is theoretically sound, practical detection and observation pose considerable difficulties.
Al_
Messages
261
Reaction score
32
TL;DR
Is gravitational lensing of gravitational waves a real thing? We hear discussion of the lensing of light, but would it also happen for gravitational waves? And how powerful could this be at it's strongest?
How powerful could this be at it's strongest, say, a supermassive black hole merger lensed by another nearby black hole?

Could the waves be powerful enough to be easily detected, or even to be seen directly if a human was there? What would they do to solid matter, bend or crack it?
 
Physics news on Phys.org
Since gravitational lensing is a result of the intermediate mass determining what the geodesic paths are (straight lines, shortest distances in spacetime), I would expect it to influence all physical entities.
As far as detection goes, we would need great directional accuracy in measuring gravitational waves to see it. The angles from lensing of light that we have seen are very small.
 
Al_ said:
TL;DR Summary: Is gravitational lensing of gravitational waves a real thing? We hear discussion of the lensing of light, but would it also happen for gravitational waves? And how powerful could this be at it's strongest?

How powerful could this be at it's strongest, say, a supermassive black hole merger lensed by another nearby black hole?
You can't expect the sort of image resolution that you get with optical wavelengths. Optical telescopes can image lensing rings of the angular size of a few square seconds of arc but the wavelengths of gravitational waves are long and the 'aperture' of detectors is small in wavelengths and the signal to noise ratio is low so the resulting resolution is no better than a few degrees and often a lot wider.
 
  • Informative
  • Like
Likes FactChecker and phinds
In an inertial frame of reference (IFR), there are two fixed points, A and B, which share an entangled state $$ \frac{1}{\sqrt{2}}(|0>_A|1>_B+|1>_A|0>_B) $$ At point A, a measurement is made. The state then collapses to $$ |a>_A|b>_B, \{a,b\}=\{0,1\} $$ We assume that A has the state ##|a>_A## and B has ##|b>_B## simultaneously, i.e., when their synchronized clocks both read time T However, in other inertial frames, due to the relativity of simultaneity, the moment when B has ##|b>_B##...

Similar threads

Replies
1
Views
1K
  • · Replies 14 ·
Replies
14
Views
1K
  • · Replies 24 ·
Replies
24
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 16 ·
Replies
16
Views
2K