Philosophaie
- 456
- 0
I am working in classical mechanics. A planet is orbiting a star. The planet has a given velocity and a position vector from the star. How do I find the magnitude of the gravity in the x, y and z directions.
positionvector = (x_0, y_0, z_0)
velocityvector = (v_x, v_y, v_z)
x = \frac{1}{2}*g_x*t^2 + v_x*t + x_0
y = \frac{1}{2}*g_y*t^2 + v_y*t + y_0
z = \frac{1}{2}*g_z*t^2 + v_z*t + z_0
r = \sqrt{x^2 + y^2 + z^2}
\theta = atan(\frac{y}{x})
\phi = acos(\frac{z}{r})
g = \sqrt{g_x^2 + g_y^2 + g_z^2} = -\frac{GM}{r^2}
Any hints on how to find (g_x, g_y, g_z)
positionvector = (x_0, y_0, z_0)
velocityvector = (v_x, v_y, v_z)
x = \frac{1}{2}*g_x*t^2 + v_x*t + x_0
y = \frac{1}{2}*g_y*t^2 + v_y*t + y_0
z = \frac{1}{2}*g_z*t^2 + v_z*t + z_0
r = \sqrt{x^2 + y^2 + z^2}
\theta = atan(\frac{y}{x})
\phi = acos(\frac{z}{r})
g = \sqrt{g_x^2 + g_y^2 + g_z^2} = -\frac{GM}{r^2}
Any hints on how to find (g_x, g_y, g_z)
Last edited: