Greene's Theorem over a triangle

  • Thread starter Thread starter manenbu
  • Start date Start date
  • Tags Tags
    Theorem Triangle
manenbu
Messages
101
Reaction score
0

Homework Statement



\oint_{C} (x+y)^2 dx - (x^2+y^2) dy
C is the edge of the triangle ABD on the positive direction with A(1,1), B(3,2), C(2,5).

Homework Equations



Greene's Theorem, Double Integral.

The Attempt at a Solution


According to the theorem,
\oint_{C} Pdx + Qdy = \iint_{D}(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y})dA
So in my case: P = (x+y)^2 = x^2 + 2xy + y^2 and Q = -x^2 -y^2
<br /> \frac{\partial Q}{\partial x} = -2x \\ \frac{\partial P}{\partial y} = 2x+2y<br />
so:
<br /> \oint_{C} (x+y)^2 dx - (x^2+y^2) dy = \iint_{D} -2x -2x -2y dA = -2 \iint_{D} 2x + y dA<br />

Now I need to find D, so if we got a triangle I need to find the equations for each of the 3 sides of the triangle. They are:
AB - y = x/2 + 1/2
BD - y = -3x+11
DA - y = 4x-3

I need to split it into 2 domains, one for 1<x<2 and the other for 2<x<3 like this:
<br /> \iint_{D} -2x -2x -2y dA = -2 \iint_{D} 2x + y dA = -2 \left(\int_{1}^{2} \int_{\frac{x}{2} + \frac{1}{2}}^{4x-3} 2x+y dy dx + \int_{2}^{3} \int_{\frac{x}{2} + \frac{1}{2}}^{-3x+11} 2x+y dy dx \right)<br />

Was I doing anything wrong so far?
Evaluating this integral gives me the wrong answer and I've tried a few times (both in the computer and by hand).

Thanks!
 

Attachments

  • gfhg.png
    gfhg.png
    2.5 KB · Views: 455
Physics news on Phys.org
I don't see anything wrong.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top