A Green's function calculation of an infinite lattice with periodicity in 1D

paulhj
Messages
1
Reaction score
0
TL;DR Summary
How do I numerically compute the Green's function matrix for an infinitely long lattice with some complicated unit cell?
I am currently trying to compute the Green's function matrix of an infinite lattice with a periodicity in 1 dimension in the tight binding model. I have matrix ##V## that describes the hopping of electrons within each unit cell, and a matrix ##W## that describes the hopping between unit cells.
By Fourier transforming and diagonalising the resulting matrix I have been able to calculate the energy band structure of the system as a function of momentum in the direction of periodicity. Is there then a way of numerically calculating the Green's function matrix of this system, similar to how you can calculate the Green's function for an infinite chain? Any help or recommended reading is much appreciated.
 
Physics news on Phys.org
For a finite system, computing Green's function is easy: to compute (zI-H)^-1. If you are only interested in a subsystem of a finite system, the concept of self-energy can be introduced. The self-energy is more helpful when you considering an infinite system. I suppose you want the Green's function of a subsystem inside the infinite lattice, then the problem is an embedding problem: the environment around the subsystem provide self-energy to the subsystem in question, the self-energy can be computed from the surface green function of the semi-infinite system.
 
From the BCS theory of superconductivity is well known that the superfluid density smoothly decreases with increasing temperature. Annihilated superfluid carriers become normal and lose their momenta on lattice atoms. So if we induce a persistent supercurrent in a ring below Tc and after that slowly increase the temperature, we must observe a decrease in the actual supercurrent, because the density of electron pairs and total supercurrent momentum decrease. However, this supercurrent...
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top