[1] I.V. Kanatchikov: On Field Theoretic Generalizations of a Poisson Algebra,
Rep. Math. Phys. 40 (1997) 225-234, hep-th/9710069.
[2] I.V. Kanatchikov: Canonical Structure of Classical Field Theory in the Polymomentum
Phase Space, Rep. Math. Phys. 41 (1998) 49-90, hep-th/9709229.
[3] J.F. Cari˜nena, M. Crampin & L.A. Ibort: On the Multisymplectic Formalism
for First Order Field Theories, Diff. Geom. Appl. 1 (1991) 345-374.
[4] M.J. Gotay, J. Isenberg & J.E. Marsden: Momentum Maps and Classical
Relativistic Fields I: Covariant Field Theory, physics/9801019.
[5] M. Forger & H. R¨omer: A Poisson Bracket on Multisymplectic Phase Space,
Rep. Math. Phys. 48 (2001) 211-218; math-ph/0009037.
[6] H. Goldschmidt & S. Sternberg: The Hamilton-Cartan Formalism in the
Calculus of Variations, Ann. Inst. Four. 23 (1973) 203-267.
[7] V. Guillemin & S. Sternberg: Geometric Asymptotics, Mathematical Surveys,
Vol. 14, American Mathematical Society, Providence 1977.
[8] J. Kijowski: A Finite-dimensional Canonical Formalism in the Classical Field
Theory, Commun. Math. Phys. 30 (1973) 99-128; Multiphase Spaces and Gauge
in Calculus of Variations, Bull. Acad. Pol. Sci. SMAP 22 (1974) 1219-1225.
[9] J. Kijowski & W. Szczyrba: Multisymplectic Manifolds and the Geometrical
Construction of the Poisson Brackets in the Classical Field Theory, in: “G´eometrie
Symplectique et Physique Math´ematique”, pp. 347-379, ed.: J.-M. Souriau,
C.N.R.S., Paris 1975.
[10] J. Kijowski & W. Szczyrba: Canonical Structure for Classical Field Theories,
Commun. Math. Phys. 46 (1976) 183-206.
[11] J. Kijowski & W. Tulczyjew: A Symplectic Framework for Field Theories,
Lecture Notes in Physics, Vol. 107, Springer-Verlag, Berlin 1979.
[12] M. Forger, C. Paufler & H. R¨omer: More about Poisson Brackets and
Poisson Forms in Multisymplectic Field Theory.
[13] C. Crnkovi´c & E. Witten: Covariant Description of Canonical Formalism
in Geometrical Theories, in: “Three Hundred Years of Gravitation”, pp. 676-684,
eds: W. Israel & S. Hawking, Cambridge University Press, Cambridge 1987.
[14] C. Crnkovi´c: Symplectic Geometry of Covariant Phase Space, Class. Quant.
Grav. 5 (1988) 1557-1575.
[15] G. Zuckerman: Action Principles and Global Geometry, in: “Mathematical Aspects
of String Theory”, pp. 259-288, ed.: S.-T. Yau, World Scientific, Singapore
1987.
[16] R.E. Peierls: The Commutation Laws of Relativistic Field Theory, Proc. Roy.
Soc. Lond. A 214 (1952) 143-157.
[17] B. de Witt: Dynamical Theory of Groups and Fields, in: “Relativity, Groups
and Topology, 1963 Les Houches Lectures”, pp. 585-820, eds: B. de Witt & C. de
Witt, Gordon and Breach, New York 1964.
[18] B. de Witt: The Spacetime Approach to Quantum Field Theory, in: “Relativity,
Groups and Topology II, 1983 Les Houches Lectures”, pp. 382-738, eds.: B. de
Witt & R. Stora, Elsevier, Amsterdam 1984.
[19] S.V. Romero: Colchete de Poisson Covariante na Teoria Geom´etrica dos Campos,
PhD thesis, Institute for Mathematics and Statistics, University of S˜ao Paulo,
June 2001.
[20] M. Forger & S.V. Romero: Covariant Poisson Brackets in Geometric Field
Theory.
[21] R. Abraham & J.E. Marsden: Foundations of Mechanics, 2nd edition, Benjamin/
Cummings, Reading 1978.
[22] V. Arnold: Mathematical Methods of Classical Mechanics, 2nd edition, Springer,
Berlin 1989.
[23] H.A. Kastrup: Canonical Theories of Lagrangian Dynamical Systems in Physics
Phys. Rep. 101 (1983) 3-167.
[24] G. Martin: A Darboux Theorem for Multisymplectic Manifolds, Lett. Math.
Phys. 16 (1988) 133-138.
[25] G. Martin: Dynamical Structures for k-Vector Fields, Int. J. Theor. Phys. 41
(1988) 571-585.
[26] F. Cantrijn, A. Ibort & M. de Le´on: On the Geometry of Multisymplectic
Manifolds, J. Austral. Math. Soc. (Series A) 66 (1999) 303-330.
[27] C. Paufler & H. R¨omer: Geometry of Hamiltonian n-Vector Fields in Multisymplectic
Field Theory, math-ph/0102008, to appear in J. Geom. Phys.
[28] C. Paufler: A Vertical Exterior Derivative in Multisymplectic Geometry and a
Graded Poisson Bracket for Nontrivial Geometries, Rep. Math. Phys. 47 (2001)
101-119; math-ph/0002032.
[29] L. Faddeev, in Quantum Fields and Strings: A Course for Mathematicians, Vol 1, P513-550. American Mathematical Society.
regards
sam