Hamiltonian of a Point particle on a frictionless plane

S1000
Messages
1
Reaction score
0
Homework Statement
Find the Hamiltonian of a Point particle on a frictionless plane with a given potential (kr^2)/2
Relevant Equations
L = T - V

dot rep time derivative

L = (m/2) * ( rdot^2 + r ^2 θdot^2) - V (r,θ)
Lagrange eq
d/dt (∂L/∂xdot) = ∂L/∂x
H = Σ pi qdoti - L
9efPZ.png
I am stuck on Question e and then how to proceed to f. I cannot seem to show this using the steps in the prior questions. My answers are:

a)
1673167910977.png


b)
1673167927405.png

1673167962364.png


c)

1673167979252.png


c) continued - and d) at the bottom of the page
d)
1673168014929.png
I am not sure where I have gone wrong, as I am not sure how to apply the relevant Hamilton's eq to the Hamiltonian in e)
I can sub in p_r into the Hamiltonian in e) however, I cannot use the p_theta 'dot' expression.
and then also

for f) how to show the energy is equal to kr_0.
 
Physics news on Phys.org
Most people here won't have the patience to wade through that ugly mess.
You'll need to learn quickly how to use Latex on this forum. :oldfrown:
(Do a search for "latex" to find instructions.)
 
  • Like
Likes PhDeezNutz and BvU
I agree with your Hamiltonian Expression, to complete the problem (the last few parts) realize that ##\dot{r} = 0## if we're talking about circular orbit ##r = r_0##. Which from the EL equation involving ##r## should tell you ##p_r = 0## (Which in turn tells you ##\dot{p_r} = 0##) (THIS IS THE KEY PART)

This cancels out a term in your Hamiltonian leaving.

## H = \frac{p_\theta^2}{2mr^2} + \frac{kr^2}{2}##

Take the expression for ##H## and find ##\dot{p_r} = - \frac{\partial H}{\partial R} ## set it equal to ##0## and solve for ##\frac{p_\theta^2}{2mr^2}## and plug it back into ##H## your answer should pop out.

Your assignment is likely turned in by now but you may find this helpful anyway.

But yes, use Latex next time, It is awesome.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top