Hamiltonian of a Point particle on a frictionless plane

S1000
Messages
1
Reaction score
0
Homework Statement
Find the Hamiltonian of a Point particle on a frictionless plane with a given potential (kr^2)/2
Relevant Equations
L = T - V

dot rep time derivative

L = (m/2) * ( rdot^2 + r ^2 θdot^2) - V (r,θ)
Lagrange eq
d/dt (∂L/∂xdot) = ∂L/∂x
H = Σ pi qdoti - L
9efPZ.png
I am stuck on Question e and then how to proceed to f. I cannot seem to show this using the steps in the prior questions. My answers are:

a)
1673167910977.png


b)
1673167927405.png

1673167962364.png


c)

1673167979252.png


c) continued - and d) at the bottom of the page
d)
1673168014929.png
I am not sure where I have gone wrong, as I am not sure how to apply the relevant Hamilton's eq to the Hamiltonian in e)
I can sub in p_r into the Hamiltonian in e) however, I cannot use the p_theta 'dot' expression.
and then also

for f) how to show the energy is equal to kr_0.
 
Physics news on Phys.org
Most people here won't have the patience to wade through that ugly mess.
You'll need to learn quickly how to use Latex on this forum. :oldfrown:
(Do a search for "latex" to find instructions.)
 
  • Like
Likes PhDeezNutz and BvU
I agree with your Hamiltonian Expression, to complete the problem (the last few parts) realize that ##\dot{r} = 0## if we're talking about circular orbit ##r = r_0##. Which from the EL equation involving ##r## should tell you ##p_r = 0## (Which in turn tells you ##\dot{p_r} = 0##) (THIS IS THE KEY PART)

This cancels out a term in your Hamiltonian leaving.

## H = \frac{p_\theta^2}{2mr^2} + \frac{kr^2}{2}##

Take the expression for ##H## and find ##\dot{p_r} = - \frac{\partial H}{\partial R} ## set it equal to ##0## and solve for ##\frac{p_\theta^2}{2mr^2}## and plug it back into ##H## your answer should pop out.

Your assignment is likely turned in by now but you may find this helpful anyway.

But yes, use Latex next time, It is awesome.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top